Click here to close now.

Welcome!

Microservices Journal Authors: Roger Strukhoff, Carmen Gonzalez, Alena Prokharchyk, Liz McMillan, Yeshim Deniz

Related Topics: Cloud Expo, Java, Microservices Journal, Open Source, Web 2.0, Apache

Cloud Expo: Article

The Cure for the Common Cloud-Based Big Data Initiative

Understanding how to work with Big Data

There is no doubt that Big Data holds infinite promise for a range of industries. Better visibility into data across various sources enables everything from insight into saving electricity to agricultural yield to placement of ads on Google. But when it comes to deriving value from data, no industry has been doing it as long or with as much rigor as clinical researchers.

Unlike other markets that are delving into Big Data for the first time and don't know where to begin, drug and device developers have spent years refining complex processes for asking very specific questions with clear purposes and goals. Whether using data for designing an effective and safe treatment for cholesterol, or collecting and mining data to understand proper dosage of cancer drugs, life sciences has had to dot every "i" and cross every "t" in order to keep people safe and for new therapies to pass muster with the FDA. Other industries are now marveling at a new ability to uncover information about efficiencies and cost savings, but - with less than rigorous processes in place - they are often shooting in the dark or only scratching the surface of what Big Data offers.

Drug developers today are standing on the shoulders of those who created, tested and secured FDA approval for treatments involving millions of data points (for one drug alone!) without the luxury of the cloud or sophisticated analytics systems. These systems have the potential to make the best data-driven industry even better. This article will outline key lessons and real-world examples of what other industries can and should learn from life sciences when it comes to understanding how to work with Big Data.

What Questions to Ask, What Data to Collect
In order to gain valuable insights from Big Data, there are two absolute requirements that must be met - understanding both what questions to ask and what data to collect. These two components are symbiotic, and understanding both fully is difficult, requiring both domain expertise and practical experience.

In order to know what data to collect, you first must know the types of questions that you're going to want to ask - often an enigma. With the appropriate planning and experience-based guesses, you can often make educated assumptions. The trick to collecting data is that you need to collect enough to answer questions, but if you collect too much then you may not be able to distill the specific subset that will answer your questions. Also, explicit or inherent cost can prevent you from collecting all possible data, in which case you need to carefully select which areas to collect data about.

Let's take a look at how this is done in clinical trials. Say you're designing a clinical study that will analyze cancer data. You may not have specific questions when the study is being designed, but it's reasonable to assume that you'll want to collect data related to commonly impacted readings for the type of cancer and whatever body system is affected, so that you have the right information to analyze when it comes time.

You may also want to collect data unrelated to the specific disease that subsequent questions will likely require, such as information on demographics and medications that the patient is taking that are different from the treatment. During the post-study data analysis, questions on these areas often arise, even though the questions aren't initially apparent. Thus clinical researchers have adopted common processes for collecting data on demographics and concomitant medications. Through planning and experience, you can also identify areas that do not need to be collected for each study. For example, if you're studying lung cancer, collecting cognitive function data is probably unrelated.

How can other industries anticipate what questions to ask, as is done in life sciences? Well, determine a predefined set of questions that are directly related to the goal of the data analysis. Since you will not know all of the questions until after the data collection have started, it's important to 1) know the domain, and 2) collect any data you'll need to answer the likely questions that could come up.

Also, clinical researchers have learned that questions can be discovered automatically. There are data mining techniques that can uncover statistically significant connections, which in effect are raising questions that can be explored in more detail afterwards. An analysis can be planned before data is collected, but not actually be run until afterwards (or potentially during), if the appropriate data is collected.

One other area that has proven to be extremely important to collect is metadata, or data about the data - such as, when it was collected, where it was collected, what instrumentation was used in the process and what calibration information was available. All of this information can be utilized later on to answer a lot of potentially important questions. Maybe there was a specific instrument that was incorrectly configured and all the resulting data that it recorded is invalid. If you're running an ad network, maybe there's a specific web site where your ads are run that are gaming the system trying to get you to pay more. If you're running a minor league team, maybe there's a specific referee that's biased, which you can address for subsequent games. Or, if you're plotting oil reserves in the Gulf of Mexico, maybe there are certain exploratory vessels that are taking advantage of you. In all of these cases, without the appropriate metadata, it'd be impossible to know where real problems reside.

Identifying Touch Points to Be Reviewed Along the Way
There are ways to specify which types of analysis can be performed, even while data is being collected, that can affect either how data will continue to be collected or the outcome as a whole.

For example, some clinical studies run what's called interim analysis while the study is in progress. These interim analyses are planned, and the various courses that can be used afterwards are well defined, but the results afterward are statistically usable. This is called an adaptive clinical trial, and there are a lot of studies that are being performed to determine more effective and useful ways that these can be done in the future. The most important aspect of these is preventing biases, and this is something that has been well understood and tested by the pharmaceutical community over the past several decades. Simply understanding what's happening during the course of a trial, or how it affects the desired outcome, can actually bias the results.

The other key factor is that the touch points are accessible to everybody who needs the data. For example, if you have a person in the field, then it's important to have him or her access the data in a format that's easily consumable to them - maybe through an iPad or an existing intranet portal. Similarly, if you have an executive that needs to understand something at a high level, then getting it to them in an easily consumable executive dashboard is extremely important.

As the life sciences industry has learned, if the distribution channels of the analytics aren't seamless and frictionless, then they won't be utilized to their fullest extent. This is where cloud-based analytics become exceptionally powerful - the cloud makes it much easier to integrate analytics into every user's day. Once each user gets the exact information they need, effortlessly, they can then do their job better and the entire organization will work better - regardless of how and why the tools are being used.

Augmenting Human Intuition
Think about the different types of tools that people use on a daily basis. People use wrenches to help turn screws, cars to get to places faster and word processers to write. Sure, we can use our hands or walk, but we're much more efficient and better when we can use tools.

Cloud-based analytics is a tool that enables everybody in an organization to perform more efficiently and effectively. The first example of this type of augmentation in the life sciences industry is alerting. A user tells the computer what they want to see, and then the computer alerts them via email or text message when the situation arises. Users can set rules for the data it wants to see, and then the tools keep on the lookout to notify the user when the data they are looking for becomes available.

Another area the pharmaceutical industry has thoroughly explored is data-driven collaboration techniques. In the clinical trial process, there are many different groups of users: those who are physically collecting the data (investigators), others who are reviewing it to make sure that it's clean (data managers), and also people who are stuck in the middle (clinical monitors). Of course there are many other types of users, but this is just a subset to illustrate the point. These different groups of users all serve a particular purpose relating to the overall collection of data and success of the study. When the data looks problematic or unclean, the data managers will flag it for review, which the clinical monitors can act on.

What's unique about the way that life sciences deals with this is that they've set up complex systems and rules to make sure that the whole system runs well. The tools associated around these processes help augment human intuition through alerting, automated dissemination and automatic feedback. The questions aren't necessarily known at the beginning of a trial, but as the data is collected, new questions evolve and the tools and processes in place are built to handle the changing landscape.

No matter what the purpose of Big Data analytics, any organization can benefit from the mindset of cloud-based analytics as a tool that needs to consistently be adjusted and refined to meet the needs of users.

Ongoing Challenges of Big Data Analytics
Given this history with data, one would expect that drug and device developers would be light years ahead when it comes to leveraging Big Data technologies - especially given that the collection and analytics of clinical data is often a matter of life and death. But while they have much more experience with data, the truth is that life sciences organizations are just now starting to integrate analytics technologies that will enable them to work with that data in new, more efficient ways - no longer involving billions of dollars a year, countless statisticians, archaic methods, and, if we're being honest, brute force. As new technology becomes available, the industry will continue to become more and more seamless. In the meantime, other industries looking to wrap their heads around the Big Data challenge should look to life sciences as the starting point for best practices in understanding how and when to ask the right questions, monitoring data along the way and selecting tools that improve the user experience.

More Stories By Rick Morrison

Rick Morrison is CEO and co-founder of Comprehend Systems. Prior to Comprehend Systems, he was the Chief Technology Officer of an Internet-based data aggregator, where he was responsible for product development and operations. Prior to that, he was at Integrated Clinical Systems, where he led the design and implementation of several major new features. He also proposed and led a major infrastructure redesign, and introduced new, streamlined development processes. Rick holds a BS in Computer Science from Carnegie Mellon University in Pittsburgh, Pennsylvania.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
The stack is the hack, Jack. That's my takeaway from several events I attended over the past few weeks in Silicon Valley and Southeast Asia. I listened to and participated in discussions about everything from large datacenter management (think Facebook Open Compute) to enterprise-level cyberfraud (at a seminar in Manila attended by the US State Dept. and Philippine National Police) to the world of entrepreneurial startups, app deployment, and mobility (in a series of meetups and talks in bot...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch ...
So I guess we’ve officially entered a new era of lean and mean. I say this with the announcement of Ubuntu Snappy Core, “designed for lightweight cloud container hosts running Docker and for smart devices,” according to Canonical. “Snappy Ubuntu Core is the smallest Ubuntu available, designed for security and efficiency in devices or on the cloud.” This first version of Snappy Ubuntu Core features secure app containment and Docker 1.6 (1.5 in main release), is available on public clouds, ...
SYS-CON Events announced today the IoT Bootcamp – Jumpstart Your IoT Strategy, being held June 9–10, 2015, in conjunction with 16th Cloud Expo and Internet of @ThingsExpo at the Javits Center in New York City. This is your chance to jumpstart your IoT strategy. Combined with real-world scenarios and use cases, the IoT Bootcamp is not just based on presentations but includes hands-on demos and walkthroughs. We will introduce you to a variety of Do-It-Yourself IoT platforms including Arduino, Ras...
SYS-CON Events announced today the DevOps Foundation Certification Course, being held June ?, 2015, in conjunction with DevOps Summit and 16th Cloud Expo at the Javits Center in New York City, NY. This sixteen (16) hour course provides an introduction to DevOps – the cultural and professional movement that stresses communication, collaboration, integration and automation in order to improve the flow of work between software developers and IT operations professionals. Improved workflows will res...
One of the most frequently requested Rancher features, load balancers are used to distribute traffic between docker containers. Now Rancher users can configure, update and scale up an integrated load balancing service to meet their application needs, using either Rancher's UI or API. To implement our load balancing functionality we decided to use HAproxy, which is deployed as a contianer, and managed by the Rancher orchestration functionality. With Rancher's Load Balancing capability, users ...
SYS-CON Events announced today that Vicom Computer Services, Inc., a provider of technology and service solutions, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. They are located at booth #427. Vicom Computer Services, Inc. is a progressive leader in the technology industry for over 30 years. Headquartered in the NY Metropolitan area. Vicom provides products and services based on today’s requirements...
Public Cloud IaaS started it's life in the developer and startup communities and has grown rapidly to a $20B+ industry, but it still pales in comparison to how much is spent worldwide on IT: $3.6 trillion. In fact, there are 8.6 million data centers worldwide, the reality is many small and medium sized business have server closets and colocation footprints filled with servers and storage gear. While on-premise environment virtualization may have peaked at 75%, the Public Cloud has lagged in ado...
Dave will share his insights on how Internet of Things for Enterprises are transforming and making more productive and efficient operations and maintenance (O&M) procedures in the cleantech industry and beyond. Speaker Bio: Dave Landa is chief operating officer of Cybozu Corp (kintone US). Based in the San Francisco Bay Area, Dave has been on the forefront of the Cloud revolution driving strategic business development on the executive teams of multiple leading Software as a Services (SaaS) ap...
SYS-CON Events announced today that Soha will exhibit at SYS-CON's DevOps Summit New York, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Soha delivers enterprise-grade application security, on any device, as agile as the cloud. This turnkey, cloud-based service enables customers to solve secure application access and delivery challenges that traditional or virtualized network solutions cannot solve because they are too expensive, inflexible and operational...
Microsoft is releasing in the near future Azure Service Fabric as a preview beta. Azure Service Fabric is built to run microservices - a complex application consisting of smaller, interlocked components that enables updating components without disrupting service. Microsoft has used this over the past few years internally for many of its own applications and the new release is for general use, a new product. OSIsoft is an early adopter of this system and run with it to expand into the explo...
ProfitBricks, the provider of painless cloud infrastructure IaaS, today released its SDK for Ruby, written against the company's new RESTful API. The new SDK joins ProfitBricks' previously announced support for the popular multi-cloud open-source Fog project. This new Ruby SDK, which exposes advanced functionality to take advantage of ProfitBricks' simplicity and productivity, aligns with ProfitBricks' mission to provide a painless way to automate infrastructure in the cloud. Ruby is a genera...
SYS-CON Events announced today that Ciqada will exhibit at SYS-CON's @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Ciqada™ makes it easy to connect your products to the Internet. By integrating key components - hardware, servers, dashboards, and mobile apps - into an easy-to-use, configurable system, your products can quickly and securely join the internet of things. With remote monitoring, control, and alert messaging capability, you will mee...
of cloud, colocation, managed services and disaster recovery solutions, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. TierPoint, LLC, is a leading national provider of information technology and data center services, including cloud, colocation, disaster recovery and managed IT services, with corporate headquarters in St. Louis, MO. TierPoint was formed through the strategic combination of some of t...
ProfitBricks, the provider of painless cloud infrastructure for IaaS, today announced the release of a Node.js SDK written against its recently launched REST API. This new JavaScript based library provides coverage for all existing ProfitBricks REST API functions. With additional libraries set to release this month, ProfitBricks continues to prove its dedication to the DevOps community and commitment to making cloud migrations and cloud management painless. Node.js is an open source, cross-pl...
ProfitBricks has launched its new DevOps Central and REST API, along with support for three multi-cloud libraries and a Python SDK. This, combined with its already existing SOAP API and its new RESTful API, moves ProfitBricks into a position to better serve the DevOps community and provide the ability to automate cloud infrastructure in a multi-cloud world. Following this momentum, ProfitBricks has also introduced several libraries that enable developers to use their favorite language to code ...
What exactly is a cognitive application? In her session at 16th Cloud Expo, Ashley Hathaway, Product Manager at IBM Watson, will look at the services being offered by the IBM Watson Developer Cloud and what that means for developers and Big Data. She'll explore how IBM Watson and its partnerships will continue to grow and help define what it means to be a cognitive service, as well as take a look at the offerings on Bluemix. She will also check out how Watson and the Alchemy API team up to off...
ProfitBricks, the provider of painless cloud infrastructure IaaS, announced the launch of its new DevOps Central and REST API, along with support for three multi-cloud libraries and a Python SDK. This, combined with its already existing SOAP API and its new RESTful API, moves ProfitBricks into a position to better serve the DevOps community and provide the ability to automate cloud infrastructure in a multi-cloud world. Following this momentum, ProfitBricks is also today introducing several l...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding bu...
There is no quick way to learn Jython API but to experiment with it. The easiest way is to start with Jytutor extension for XL Deploy. Now you can also use the code snippet for exposing jython/python context in XL Deploy environment by running it directly in Jytutor Here’s how you can go ahead with that Download the Jytutor extension referring to the Jytutor Blog or from the following link https://github.com/xebialabs-community/xld-jytutor-plugin/releases Shutdown your XL Deploy server...