Click here to close now.

Welcome!

MICROSERVICES Authors: Jason Bloomberg, Michael Kanasoot, John Wetherill, Elizabeth White, Aria Blog

Related Topics: Cloud Expo, Java, MICROSERVICES, Open Source, Web 2.0, Apache

Cloud Expo: Article

The Cure for the Common Cloud-Based Big Data Initiative

Understanding how to work with Big Data

There is no doubt that Big Data holds infinite promise for a range of industries. Better visibility into data across various sources enables everything from insight into saving electricity to agricultural yield to placement of ads on Google. But when it comes to deriving value from data, no industry has been doing it as long or with as much rigor as clinical researchers.

Unlike other markets that are delving into Big Data for the first time and don't know where to begin, drug and device developers have spent years refining complex processes for asking very specific questions with clear purposes and goals. Whether using data for designing an effective and safe treatment for cholesterol, or collecting and mining data to understand proper dosage of cancer drugs, life sciences has had to dot every "i" and cross every "t" in order to keep people safe and for new therapies to pass muster with the FDA. Other industries are now marveling at a new ability to uncover information about efficiencies and cost savings, but - with less than rigorous processes in place - they are often shooting in the dark or only scratching the surface of what Big Data offers.

Drug developers today are standing on the shoulders of those who created, tested and secured FDA approval for treatments involving millions of data points (for one drug alone!) without the luxury of the cloud or sophisticated analytics systems. These systems have the potential to make the best data-driven industry even better. This article will outline key lessons and real-world examples of what other industries can and should learn from life sciences when it comes to understanding how to work with Big Data.

What Questions to Ask, What Data to Collect
In order to gain valuable insights from Big Data, there are two absolute requirements that must be met - understanding both what questions to ask and what data to collect. These two components are symbiotic, and understanding both fully is difficult, requiring both domain expertise and practical experience.

In order to know what data to collect, you first must know the types of questions that you're going to want to ask - often an enigma. With the appropriate planning and experience-based guesses, you can often make educated assumptions. The trick to collecting data is that you need to collect enough to answer questions, but if you collect too much then you may not be able to distill the specific subset that will answer your questions. Also, explicit or inherent cost can prevent you from collecting all possible data, in which case you need to carefully select which areas to collect data about.

Let's take a look at how this is done in clinical trials. Say you're designing a clinical study that will analyze cancer data. You may not have specific questions when the study is being designed, but it's reasonable to assume that you'll want to collect data related to commonly impacted readings for the type of cancer and whatever body system is affected, so that you have the right information to analyze when it comes time.

You may also want to collect data unrelated to the specific disease that subsequent questions will likely require, such as information on demographics and medications that the patient is taking that are different from the treatment. During the post-study data analysis, questions on these areas often arise, even though the questions aren't initially apparent. Thus clinical researchers have adopted common processes for collecting data on demographics and concomitant medications. Through planning and experience, you can also identify areas that do not need to be collected for each study. For example, if you're studying lung cancer, collecting cognitive function data is probably unrelated.

How can other industries anticipate what questions to ask, as is done in life sciences? Well, determine a predefined set of questions that are directly related to the goal of the data analysis. Since you will not know all of the questions until after the data collection have started, it's important to 1) know the domain, and 2) collect any data you'll need to answer the likely questions that could come up.

Also, clinical researchers have learned that questions can be discovered automatically. There are data mining techniques that can uncover statistically significant connections, which in effect are raising questions that can be explored in more detail afterwards. An analysis can be planned before data is collected, but not actually be run until afterwards (or potentially during), if the appropriate data is collected.

One other area that has proven to be extremely important to collect is metadata, or data about the data - such as, when it was collected, where it was collected, what instrumentation was used in the process and what calibration information was available. All of this information can be utilized later on to answer a lot of potentially important questions. Maybe there was a specific instrument that was incorrectly configured and all the resulting data that it recorded is invalid. If you're running an ad network, maybe there's a specific web site where your ads are run that are gaming the system trying to get you to pay more. If you're running a minor league team, maybe there's a specific referee that's biased, which you can address for subsequent games. Or, if you're plotting oil reserves in the Gulf of Mexico, maybe there are certain exploratory vessels that are taking advantage of you. In all of these cases, without the appropriate metadata, it'd be impossible to know where real problems reside.

Identifying Touch Points to Be Reviewed Along the Way
There are ways to specify which types of analysis can be performed, even while data is being collected, that can affect either how data will continue to be collected or the outcome as a whole.

For example, some clinical studies run what's called interim analysis while the study is in progress. These interim analyses are planned, and the various courses that can be used afterwards are well defined, but the results afterward are statistically usable. This is called an adaptive clinical trial, and there are a lot of studies that are being performed to determine more effective and useful ways that these can be done in the future. The most important aspect of these is preventing biases, and this is something that has been well understood and tested by the pharmaceutical community over the past several decades. Simply understanding what's happening during the course of a trial, or how it affects the desired outcome, can actually bias the results.

The other key factor is that the touch points are accessible to everybody who needs the data. For example, if you have a person in the field, then it's important to have him or her access the data in a format that's easily consumable to them - maybe through an iPad or an existing intranet portal. Similarly, if you have an executive that needs to understand something at a high level, then getting it to them in an easily consumable executive dashboard is extremely important.

As the life sciences industry has learned, if the distribution channels of the analytics aren't seamless and frictionless, then they won't be utilized to their fullest extent. This is where cloud-based analytics become exceptionally powerful - the cloud makes it much easier to integrate analytics into every user's day. Once each user gets the exact information they need, effortlessly, they can then do their job better and the entire organization will work better - regardless of how and why the tools are being used.

Augmenting Human Intuition
Think about the different types of tools that people use on a daily basis. People use wrenches to help turn screws, cars to get to places faster and word processers to write. Sure, we can use our hands or walk, but we're much more efficient and better when we can use tools.

Cloud-based analytics is a tool that enables everybody in an organization to perform more efficiently and effectively. The first example of this type of augmentation in the life sciences industry is alerting. A user tells the computer what they want to see, and then the computer alerts them via email or text message when the situation arises. Users can set rules for the data it wants to see, and then the tools keep on the lookout to notify the user when the data they are looking for becomes available.

Another area the pharmaceutical industry has thoroughly explored is data-driven collaboration techniques. In the clinical trial process, there are many different groups of users: those who are physically collecting the data (investigators), others who are reviewing it to make sure that it's clean (data managers), and also people who are stuck in the middle (clinical monitors). Of course there are many other types of users, but this is just a subset to illustrate the point. These different groups of users all serve a particular purpose relating to the overall collection of data and success of the study. When the data looks problematic or unclean, the data managers will flag it for review, which the clinical monitors can act on.

What's unique about the way that life sciences deals with this is that they've set up complex systems and rules to make sure that the whole system runs well. The tools associated around these processes help augment human intuition through alerting, automated dissemination and automatic feedback. The questions aren't necessarily known at the beginning of a trial, but as the data is collected, new questions evolve and the tools and processes in place are built to handle the changing landscape.

No matter what the purpose of Big Data analytics, any organization can benefit from the mindset of cloud-based analytics as a tool that needs to consistently be adjusted and refined to meet the needs of users.

Ongoing Challenges of Big Data Analytics
Given this history with data, one would expect that drug and device developers would be light years ahead when it comes to leveraging Big Data technologies - especially given that the collection and analytics of clinical data is often a matter of life and death. But while they have much more experience with data, the truth is that life sciences organizations are just now starting to integrate analytics technologies that will enable them to work with that data in new, more efficient ways - no longer involving billions of dollars a year, countless statisticians, archaic methods, and, if we're being honest, brute force. As new technology becomes available, the industry will continue to become more and more seamless. In the meantime, other industries looking to wrap their heads around the Big Data challenge should look to life sciences as the starting point for best practices in understanding how and when to ask the right questions, monitoring data along the way and selecting tools that improve the user experience.

More Stories By Rick Morrison

Rick Morrison is CEO and co-founder of Comprehend Systems. Prior to Comprehend Systems, he was the Chief Technology Officer of an Internet-based data aggregator, where he was responsible for product development and operations. Prior to that, he was at Integrated Clinical Systems, where he led the design and implementation of several major new features. He also proposed and led a major infrastructure redesign, and introduced new, streamlined development processes. Rick holds a BS in Computer Science from Carnegie Mellon University in Pittsburgh, Pennsylvania.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
Our guest on the podcast this week is Jason Bloomberg, President at Intellyx. When we build services we want them to be lightweight, stateless and scalable while doing one thing really well. In today’s cloud world, we’re revisiting what to takes to make a good service in the first place.microservices Listen in to learn why following “the book” doesn’t necessarily mean that you’re solving key business problems.
Cloud computing is changing the way we look at IT costs, according to industry experts on a recent Cloud Luminary Fireside Chat panel discussion. Enterprise IT, traditionally viewed as a cost center, now plays a central role in the delivery of software-driven goods and services. Therefore, companies need to understand their cloud utilization and resulting costs in order to ensure profitability on their business offerings. Led by Bernard Golden, this fireside chat offers valuable insights on ho...
It's 2:15pm on a Friday, and I'm sitting in the keynote hall at PyCon 2013 fidgeting through a succession of lightning talks that have very little relevance to my life. Topics like "Python code coverage techniques" (ho-hum) and "Controlling Christmas lights with Python” (yawn - I wonder if there's anything new on Hacker News)...when Solomon Hykes takes the stage, unveils Docker, and the world shifts. If you haven't seen it yet, you should watch the video of Solomon's Pycon The Future of Linux C...
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY., and the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides private all-in-one social intranets allowing workers to securely collaborate from anywhere in the world and from any device. Social, mobile, and eas...
SYS-CON Events announced today that Solgenia will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY, and the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Solgenia is the global market leader in Cloud Collaboration and Cloud Infrastructure software solutions. Designed to “Bridge the Gap” between Personal and Professional S...
You hear the terms “subscription economy” and “subscription commerce” all the time. And with good reason. Subscription-based monetization is transforming business as we know it. But what about usage? Where’s the “consumption economy”? Turns out, it’s all around us. When most people think of usage-based billing, the example that probably comes to mind first is metered public utilities — water, gas and electric. Phone services, especially mobile, might come next. Then maybe taxis. And that’s ab...
Exelon Corporation employs technology and process improvements to optimize their IT operations, manage a merger and acquisition transition, and to bring outsourced IT operations back in-house. To learn more about how this leading energy provider in the US, with a family of companies having $23.5 billion in annual revenue, accomplishes these goals we're joined by Jason Thomas, Manager of Service, Asset and Release Management at Exelon. The discussion is moderated by me, Dana Gardner, Principal A...
This month I want to revisit supporting infrastructure and datacenter environments. I have touched (some would say rant) upon this topic since my post in April 2014 called "Take a Holistic View of Support". My thoughts and views on this topic have not changed at all: it's critical for any organization to have a holistic, comprehensive strategy and view of how they support their IT infrastructure and datacenter environments. In fact, I believe it's even more critical today then it was a year ago ...
As a group of concepts, DevOps has converged on several prominent themes including continuous software delivery, automation, and configuration management (CM). These integral pieces often form the pillars of an organization’s DevOps efforts, even as other bigger pieces like overarching best practices and guidelines are still being tried and tested. Being that DevOps is a relatively new paradigm - movement - methodology - [insert your own label here], standards around it have yet to be codified a...
Modern Systems announced completion of a successful project with its new Rapid Program Modernization (eavRPMa"c) software. The eavRPMa"c technology architecturally transforms legacy applications, enabling faster feature development and reducing time-to-market for critical software updates. Working with Modern Systems, the University of California at Santa Barbara (UCSB) leveraged eavRPMa"c to transform its Student Information System from Software AG's Natural syntax to a modern application lev...
When it comes to microservices there are myths and uncertainty about the journey ahead. Deploying a “Hello World” app on Docker is a long way from making microservices work in real enterprises with large applications, complex environments and existing organizational structures. February 19, 2015 10:00am PT / 1:00pm ET → 45 Minutes Join our four experts: Special host Gene Kim, Gary Gruver, Randy Shoup and XebiaLabs’ Andrew Phillips as they explore the realities of microservices in today’s IT worl...
The world's leading Cloud event, Cloud Expo has launched Microservices Journal on the SYS-CON.com portal, featuring over 19,000 original articles, news stories, features, and blog entries. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. Microservices Journal offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Follow new article posts on T...
Hosted PaaS providers have given independent developers and startups huge advantages in efficiency and reduced time-to-market over their more process-bound counterparts in enterprises. Software frameworks are now available that allow enterprise IT departments to provide these same advantages for developers in their own organization. In his workshop session at DevOps Summit, Troy Topnik, ActiveState’s Technical Product Manager, will show how on-prem or cloud-hosted Private PaaS can enable organ...
OmniTI has expanded its services to help customers automate their processes to deliver high quality applications to market faster. Consistent with its focus on IT agility and quality, OmniTI operates under DevOps principles, exploring the flow of value through the IT delivery process, identifying opportunities to eliminate waste, realign misaligned incentives, and open bottlenecks. OmniTI takes a unique, value-centric approach by plotting each opportunity in an effort-payoff quadrant, then work...
For those of us that have been practicing SOA for over a decade, it's surprising that there's so much interest in microservices. In fairness microservices don't look like the vendor play that was early SOA in the early noughties. But experienced SOA practitioners everywhere will be wondering if microservices is actually a good thing. You see microservices is basically an SOA pattern that inherits all the well-known SOA principles and adds characteristics that address the use of SOA for distribut...
Microservice architectures are the new hotness, even though they aren't really all that different (in principle) from the paradigm described by SOA (which is dead, or not dead, depending on whom you ask). One of the things this decompositional approach to application architecture does is encourage developers and operations (some might even say DevOps) to re-evaluate scaling strategies. In particular, the notion is forwarded that an application should be built to scale and then infrastructure sho...
SYS-CON Events announced today the IoT Bootcamp – Jumpstart Your IoT Strategy, being held June 9–10, 2015, in conjunction with 16th Cloud Expo and Internet of @ThingsExpo at the Javits Center in New York City. This is your chance to jumpstart your IoT strategy. Combined with real-world scenarios and use cases, the IoT Bootcamp is not just based on presentations but includes hands-on demos and walkthroughs. We will introduce you to a variety of Do-It-Yourself IoT platforms including Arduino, Ras...
Our guest on the podcast this week is Jason Bloomberg, President at Intellyx. When we build services we want them to be lightweight, stateless and scalable while doing one thing really well. In today's cloud world, we're revisiting what to takes to make a good service in the first place. Listen in to learn why following "the book" doesn't necessarily mean that you're solving key business problems.
Microservices are the result of decomposing applications. That may sound a lot like SOA, but SOA was based on an object-oriented (noun) premise; that is, services were built around an object - like a customer - with all the necessary operations (functions) that go along with it. SOA was also founded on a variety of standards (most of them coming out of OASIS) like SOAP, WSDL, XML and UDDI. Microservices have no standards (at least none deriving from a standards body or organization) and can be b...
Right off the bat, Newman advises that we should "think of microservices as a specific approach for SOA in the same way that XP or Scrum are specific approaches for Agile Software development". These analogies are very interesting because my expectation was that microservices is a pattern. So I might infer that microservices is a set of process techniques as opposed to an architectural approach. Yet in the book, Newman clearly includes some elements of concept model and architecture as well as p...