Welcome!

Microservices Expo Authors: Elizabeth White, Matt Brickey, Mehdi Daoudi, Astadia CloudGPS, Liz McMillan

Related Topics: Microservices Expo, Industrial IoT, Recurring Revenue

Microservices Expo: Article

Improving the Efficiency of SOA-Based Applications

Using an Application Grid with large XML documents to build SOA applications that scale linearly and predictably

According to Moore's Law [1], processing speed and storage capacity have been doubling about every two years since the invention of the integrated circuit in 1958.

Yet it seems that our propensity for building larger more complex software systems that anticipate these improvements inevitably outpace the exponential growth in capacity to support these systems. SOA is becoming more broadly adopted, along with the practice of using XML as a means of communicating data between services and the more rapid adoption of applications to Internet scale. Staring you in the face of your application's success, the potential to overwhelm your systems has become very real, and may happen at times when you least expect it.

How do we get ahead of this trend? Given that memory and storage are always increasing in the realm of enterprise computing, software needs to keep up with the pace. We need to architect from the beginning using the proper approach toward achieving linear scalability with predictable latency. Data files and feeds are increasing in size, requiring more processing, and becoming more cumbersome to manage with software designed to materialize entire files before consuming them. In some cases, the operations that are to be performed require multiple input sources to be consumed before processing can begin.

Those who are building the eXtreme Transaction Processing (XTP) style of applications - such as Telco call setup and billing, online gaming, securities trading, risk management, and online travel booking - understand this challenge well. The broader use case that is applicable across more industries is web applications that need to scale up to Internet volumes, against backend systems that were never designed to handle that kind of traffic.

Boundary Costs
In discussions with customers about scaling a SOA with predictable latency, the term that often comes up is "Boundary Costs." To put this in context, consider the following scenario - an XML document that may have originated from an internal application, database, an external business partner, or perhaps converted from an EDI document, needs to be processed by a number of services, which are coordinated by a BPEL process or an ESB process pipeline. The common approach is to place the XML document on the bus and have the bus invoke the services in accordance with the process definition, passing the XML document as part of the service request payload. Each service that needs to process that data will access the XML accordingly. Interaction with a database may also occur. This approach, as illustrated in Figure 1, sounds simple enough.

Figure 1: Calling services using BPEL process or Service Bus pipeline

However, in practice there are challenges to scalability when using this approach. What is the cost of crossing the boundary from one service to the next? How many times does that cost get incurred in the context of invoking a simple business process? What if the XML document is really large in the multi-megabyte range, or there are lots of them numbering in the thousands, or both?

Compounding this challenge is the reality that most IT environments are a mixture of platforms and technologies. Regardless of how efficient your process engine or service bus might be, the processing at the service endpoint might still become a bottleneck. A recent conversation at a customer site revealed a 15-step business process that normally takes 15 seconds to run, but of late under peak loads it is violating its 30-second SLA. The developers had spent the better part of the past two years optimizing and tuning every last bit of performance out of each one of those 15 services, and the remaining culprit identified for the poor end-to-end latency is the boundary cost between the services. A detailed examination revealed that each of the 15 service calls was spending 1-2 seconds in an open source web service toolkit doing parsing and marshaling of the XML payload. This is not intended to be a disparaging comment about open source web services toolkits, but is simply illustrating the point that parsing and marshaling of XML at the endpoints can introduce latency that can add up pretty quickly.

As illustrated in Figure 2, each service invoked needs to read the XML payload from its on-the-wire serialization form, and parse the XML into a native Java or .NET object form to be processed by the business logic. In addition if database interaction is required, then there is an additional object to relational mapping that needs to occur. Finally, the inverse of those steps needs to occur in order to generate a response to the service request and send that along to the next downstream service in accordance with the business process that is coordinating the interaction between the services.

Figure 2: Service request boundary cost between XML to Object to Relational and back again for each invocation

A popular approach for dealing with XML in a SOA is to use web services and XMLBeans. Using XMLBeans, objects are typically created by fully materializing the inputs and outputs, as this allows for maximum usability and processing. In-memory processing may include sorting, filtering, or aggregation operations, all of which increase the overall memory required to deal with each call. This strategy is not scalable and cannot be applied to many of the use cases in this area. Many products support streaming of XML, but this may limit the ability to do anything meaningful without putting the data somewhere else first.

What if there was a way to take this information and store it in an application grid, a place where the size of the data and the processing capability can far eclipse that of any single machine or process? The application grid can utilize the combined memory and processing power of multiple machines in order to complete an operation, such as the application of a complex formula or filter across an enormous data set. The application grid also provides the ability to hold the data for longer periods of time beyond the cycle of a single service request, survive server restarts, and even work across network boundaries.

If we could combine the power of the grid for data storage and manipulation with the efficiency of streaming, the result would be a highly scalable system capable of processing much more information than before. Using a combination of complementary technologies here, we achieve our goal of spreading compute operations across a distributed network of machines, and we lessen the processing and memory requirements of our data consumers - SOA services, application servers, and client applications. We also remove the need to use a database for intermediate storage of data while it is (or simply so it can be) processed. By using an application grid we can also implement patterns where we pass around references to data, rather than the data, resulting in huge efficiency gains in the communications layer, and dramatically reducing or eliminating the boundary cost.

This article includes a code example that covers the use case of processing large XML files in an application grid. In a typical XML file, there are a usually elements that repeat without any pre-determined limit. Using a STAX parser to handle streaming XML, and JAXB to handle conversion between XML and Java objects, we can extract these repeating elements from the XML stream and put them on the application grid as individual objects. The implementation can populate the grid with these objects, and do so with a limited amount of memory consumption. Once populated, the grid can process the data across the multiple machines that constitute the grid. Each grid member processes an operation or a filter and passes intermediate results to the grid client, which then assembles them into a final result set.

What Is an Application Grid?
An application grid is a horizontally scalable agent based in an in-memory storage engine for application state data. This effectively provides a distributed shared memory pool that can be linearly scaled across a heterogeneous grid of machines that consists of any combination of high-end and lower-cost commodity hardware. Use of an application grid in an application simultaneously provides performance, scalability and reliability to in-memory data.

One way that an application utilizes an application grid is to use API-level interfaces that mimic the Java Hashmap, .NET Dictionary, or JPA interfaces. An alternate approach is to use a service-level interface from a SOA environment. As applications or services place data into the application grid, a group of constantly cooperating caching servers coordinate updates to data objects, as well as their backups, using cluster-wide concurrency control.

As shown in Figure 3, the request to put data to the map is taken over by the application grid and transported across a highly efficient networking protocol to the grid node P, which owns the primary instance data. The primary node in turn copies the updated value to the secondary node B for backup, and then returns control to the service.

Figure 3: Application grid clustering ensures primary / backup of in-memory data on separate machines.

The application grid stores data across multiple machines with complete location transparency as it sees fit. A unique hash key value is all that is necessary to retrieve the stored data at a future point, regardless of where the application grid chose to store the data. This prevents the application logic from dealing with complex location dependencies and manual partitioning schemes. If one or more nodes in the grid fails, or can't be reached due to network failure, the application grid will immediately react to the failure and rebalance the data across the remaining healthy nodes. This can happen even if the failing node had been participating in an autonomous update operation. In Figure 4, the primary owner ‘P' of a piece of data fails while in the midst of retrieving data for the service. The get() request is immediately routed to the backup node and a new primary / backup pair is allotted.

Figure 4:  Application grid provides continual failover of in-memory state data

This data stored in the grid can be anything from simple variables to complex objects or even large XML documents. In our case we chose to fragment what would have been very large XML documents into smaller parts and store those XML fragments as Java objects in the application grid. This allows us to do parallel queries against the data using the Java APIs.

The application grid supports a range of operations including parallel processing of queries, events, and transactions. For large datasets, an entire collection of data may be put to the grid as a single operation, and the grid can disperse the contents of the collection across multiple primary and backup nodes in order to scale. In more advanced applications, the grid may even execute business logic directly and in parallel on data storage nodes, and do so with data and logic affinity such that the logic executes on the same machine that is storing the data that the logic is operating on.

More Stories By Dave Chappell

David Chappell is vice president and chief technologist for SOA at Oracle Corporation, and is driving the vision for Oracle’s SOA on App Grid initiative.

More Stories By Andrew Gregory

Andrew Gregory is currently a Sales Consultant at Oracle Corporation. He has worked in Development, Product Support, Infrastructure, and Sales over 13 years in the industry.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
jhv1blz5 07/03/09 10:31:00 AM EDT

The article validated SOA as an IT architecture paradigm that can be leveraged in many ways. Taking data storage, scalability and application performance to a nifty level using SOA Application Grid infrastructure will no doubt enhance data and application performance on Oracle architecture platforms, it also has the promise of a cost effective and efficient IT delivery model. The very benefits of SOA.

@MicroservicesExpo Stories
"I think DevOps is now a rambunctious teenager – it’s starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
If you read a lot of business and technology publications, you might think public clouds are universally preferred over all other cloud options. To be sure, the numbers posted by Amazon Web Services (AWS) and Microsoft’s Azure platform are nothing short of impressive. Statistics reveal that public clouds are growing faster than private clouds and analysts at IDC predict that public cloud growth will be 3 times that of private clouds by 2019.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
If you are thinking about moving applications off a mainframe and over to open systems and the cloud, consider these guidelines to prioritize what to move and what to eliminate. On the surface, mainframe architecture seems relatively simple: A centrally located computer processes data through an input/output subsystem and stores its computations in memory. At the other end of the mainframe are printers and terminals that communicate with the mainframe through protocols. For all of its appare...
Your homes and cars can be automated and self-serviced. Why can't your storage? From simply asking questions to analyze and troubleshoot your infrastructure, to provisioning storage with snapshots, recovery and replication, your wildest sci-fi dream has come true. In his session at @DevOpsSummit at 20th Cloud Expo, Dan Florea, Director of Product Management at Tintri, provided a ChatOps demo where you can talk to your storage and manage it from anywhere, through Slack and similar services with...
"Peak 10 is a hybrid infrastructure provider across the nation. We are in the thick of things when it comes to hybrid IT," explained Michael Fuhrman, Chief Technology Officer at Peak 10, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
"DivvyCloud as a company set out to help customers automate solutions to the most common cloud problems," noted Jeremy Snyder, VP of Business Development at DivvyCloud, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Data reduction delivers compelling cost reduction that substantially improves the business case in every cloud deployment model. No matter which cloud approach you choose, the cost savings benefits from data reduction should not be ignored and must be a component of your cloud strategy. IT professionals are finding that the future of IT infrastructure lies in the cloud. Data reduction technologies enable clouds — public, private, and hybrid — to deliver business agility and elasticity at the lo...
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
"As we've gone out into the public cloud we've seen that over time we may have lost a few things - we've lost control, we've given up cost to a certain extent, and then security, flexibility," explained Steve Conner, VP of Sales at Cloudistics,in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
From personal care products to groceries and movies on demand, cloud-based subscriptions are fulfilling the needs of consumers across an array of market sectors. Nowhere is this shift to subscription services more evident than in the technology sector. By adopting an Everything-as-a-Service (XaaS) delivery model, companies are able to tailor their computing environments to shape the experiences they want for customers as well as their workforce.
"We focus on SAP workloads because they are among the most powerful but somewhat challenging workloads out there to take into public cloud," explained Swen Conrad, CEO of Ocean9, Inc., in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I will be talking about ChatOps and ChatOps as a way to solve some problems in the DevOps space," explained Himanshu Chhetri, CTO of Addteq, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Five years ago development was seen as a dead-end career, now it’s anything but – with an explosion in mobile and IoT initiatives increasing the demand for skilled engineers. But apart from having a ready supply of great coders, what constitutes true ‘DevOps Royalty’? It’ll be the ability to craft resilient architectures, supportability, security everywhere across the software lifecycle. In his keynote at @DevOpsSummit at 20th Cloud Expo, Jeffrey Scheaffer, GM and SVP, Continuous Delivery Busine...
"We do one of the best file systems in the world. We learned how to deal with Big Data many years ago and we implemented this knowledge into our software," explained Jakub Ratajczak, Business Development Manager at MooseFS, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.