Welcome!

Microservices Expo Authors: Kelly Burford, Scott Davis, Elizabeth White, Pat Romanski, PagerDuty Blog

Related Topics: Microservices Expo, Industrial IoT, Recurring Revenue

Microservices Expo: Article

Improving the Efficiency of SOA-Based Applications

Using an Application Grid with large XML documents to build SOA applications that scale linearly and predictably

According to Moore's Law [1], processing speed and storage capacity have been doubling about every two years since the invention of the integrated circuit in 1958.

Yet it seems that our propensity for building larger more complex software systems that anticipate these improvements inevitably outpace the exponential growth in capacity to support these systems. SOA is becoming more broadly adopted, along with the practice of using XML as a means of communicating data between services and the more rapid adoption of applications to Internet scale. Staring you in the face of your application's success, the potential to overwhelm your systems has become very real, and may happen at times when you least expect it.

How do we get ahead of this trend? Given that memory and storage are always increasing in the realm of enterprise computing, software needs to keep up with the pace. We need to architect from the beginning using the proper approach toward achieving linear scalability with predictable latency. Data files and feeds are increasing in size, requiring more processing, and becoming more cumbersome to manage with software designed to materialize entire files before consuming them. In some cases, the operations that are to be performed require multiple input sources to be consumed before processing can begin.

Those who are building the eXtreme Transaction Processing (XTP) style of applications - such as Telco call setup and billing, online gaming, securities trading, risk management, and online travel booking - understand this challenge well. The broader use case that is applicable across more industries is web applications that need to scale up to Internet volumes, against backend systems that were never designed to handle that kind of traffic.

Boundary Costs
In discussions with customers about scaling a SOA with predictable latency, the term that often comes up is "Boundary Costs." To put this in context, consider the following scenario - an XML document that may have originated from an internal application, database, an external business partner, or perhaps converted from an EDI document, needs to be processed by a number of services, which are coordinated by a BPEL process or an ESB process pipeline. The common approach is to place the XML document on the bus and have the bus invoke the services in accordance with the process definition, passing the XML document as part of the service request payload. Each service that needs to process that data will access the XML accordingly. Interaction with a database may also occur. This approach, as illustrated in Figure 1, sounds simple enough.

Figure 1: Calling services using BPEL process or Service Bus pipeline

However, in practice there are challenges to scalability when using this approach. What is the cost of crossing the boundary from one service to the next? How many times does that cost get incurred in the context of invoking a simple business process? What if the XML document is really large in the multi-megabyte range, or there are lots of them numbering in the thousands, or both?

Compounding this challenge is the reality that most IT environments are a mixture of platforms and technologies. Regardless of how efficient your process engine or service bus might be, the processing at the service endpoint might still become a bottleneck. A recent conversation at a customer site revealed a 15-step business process that normally takes 15 seconds to run, but of late under peak loads it is violating its 30-second SLA. The developers had spent the better part of the past two years optimizing and tuning every last bit of performance out of each one of those 15 services, and the remaining culprit identified for the poor end-to-end latency is the boundary cost between the services. A detailed examination revealed that each of the 15 service calls was spending 1-2 seconds in an open source web service toolkit doing parsing and marshaling of the XML payload. This is not intended to be a disparaging comment about open source web services toolkits, but is simply illustrating the point that parsing and marshaling of XML at the endpoints can introduce latency that can add up pretty quickly.

As illustrated in Figure 2, each service invoked needs to read the XML payload from its on-the-wire serialization form, and parse the XML into a native Java or .NET object form to be processed by the business logic. In addition if database interaction is required, then there is an additional object to relational mapping that needs to occur. Finally, the inverse of those steps needs to occur in order to generate a response to the service request and send that along to the next downstream service in accordance with the business process that is coordinating the interaction between the services.

Figure 2: Service request boundary cost between XML to Object to Relational and back again for each invocation

A popular approach for dealing with XML in a SOA is to use web services and XMLBeans. Using XMLBeans, objects are typically created by fully materializing the inputs and outputs, as this allows for maximum usability and processing. In-memory processing may include sorting, filtering, or aggregation operations, all of which increase the overall memory required to deal with each call. This strategy is not scalable and cannot be applied to many of the use cases in this area. Many products support streaming of XML, but this may limit the ability to do anything meaningful without putting the data somewhere else first.

What if there was a way to take this information and store it in an application grid, a place where the size of the data and the processing capability can far eclipse that of any single machine or process? The application grid can utilize the combined memory and processing power of multiple machines in order to complete an operation, such as the application of a complex formula or filter across an enormous data set. The application grid also provides the ability to hold the data for longer periods of time beyond the cycle of a single service request, survive server restarts, and even work across network boundaries.

If we could combine the power of the grid for data storage and manipulation with the efficiency of streaming, the result would be a highly scalable system capable of processing much more information than before. Using a combination of complementary technologies here, we achieve our goal of spreading compute operations across a distributed network of machines, and we lessen the processing and memory requirements of our data consumers - SOA services, application servers, and client applications. We also remove the need to use a database for intermediate storage of data while it is (or simply so it can be) processed. By using an application grid we can also implement patterns where we pass around references to data, rather than the data, resulting in huge efficiency gains in the communications layer, and dramatically reducing or eliminating the boundary cost.

This article includes a code example that covers the use case of processing large XML files in an application grid. In a typical XML file, there are a usually elements that repeat without any pre-determined limit. Using a STAX parser to handle streaming XML, and JAXB to handle conversion between XML and Java objects, we can extract these repeating elements from the XML stream and put them on the application grid as individual objects. The implementation can populate the grid with these objects, and do so with a limited amount of memory consumption. Once populated, the grid can process the data across the multiple machines that constitute the grid. Each grid member processes an operation or a filter and passes intermediate results to the grid client, which then assembles them into a final result set.

What Is an Application Grid?
An application grid is a horizontally scalable agent based in an in-memory storage engine for application state data. This effectively provides a distributed shared memory pool that can be linearly scaled across a heterogeneous grid of machines that consists of any combination of high-end and lower-cost commodity hardware. Use of an application grid in an application simultaneously provides performance, scalability and reliability to in-memory data.

One way that an application utilizes an application grid is to use API-level interfaces that mimic the Java Hashmap, .NET Dictionary, or JPA interfaces. An alternate approach is to use a service-level interface from a SOA environment. As applications or services place data into the application grid, a group of constantly cooperating caching servers coordinate updates to data objects, as well as their backups, using cluster-wide concurrency control.

As shown in Figure 3, the request to put data to the map is taken over by the application grid and transported across a highly efficient networking protocol to the grid node P, which owns the primary instance data. The primary node in turn copies the updated value to the secondary node B for backup, and then returns control to the service.

Figure 3: Application grid clustering ensures primary / backup of in-memory data on separate machines.

The application grid stores data across multiple machines with complete location transparency as it sees fit. A unique hash key value is all that is necessary to retrieve the stored data at a future point, regardless of where the application grid chose to store the data. This prevents the application logic from dealing with complex location dependencies and manual partitioning schemes. If one or more nodes in the grid fails, or can't be reached due to network failure, the application grid will immediately react to the failure and rebalance the data across the remaining healthy nodes. This can happen even if the failing node had been participating in an autonomous update operation. In Figure 4, the primary owner ‘P' of a piece of data fails while in the midst of retrieving data for the service. The get() request is immediately routed to the backup node and a new primary / backup pair is allotted.

Figure 4:  Application grid provides continual failover of in-memory state data

This data stored in the grid can be anything from simple variables to complex objects or even large XML documents. In our case we chose to fragment what would have been very large XML documents into smaller parts and store those XML fragments as Java objects in the application grid. This allows us to do parallel queries against the data using the Java APIs.

The application grid supports a range of operations including parallel processing of queries, events, and transactions. For large datasets, an entire collection of data may be put to the grid as a single operation, and the grid can disperse the contents of the collection across multiple primary and backup nodes in order to scale. In more advanced applications, the grid may even execute business logic directly and in parallel on data storage nodes, and do so with data and logic affinity such that the logic executes on the same machine that is storing the data that the logic is operating on.

More Stories By Dave Chappell

David Chappell is vice president and chief technologist for SOA at Oracle Corporation, and is driving the vision for Oracle’s SOA on App Grid initiative.

More Stories By Andrew Gregory

Andrew Gregory is currently a Sales Consultant at Oracle Corporation. He has worked in Development, Product Support, Infrastructure, and Sales over 13 years in the industry.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
jhv1blz5 07/03/09 10:31:00 AM EDT

The article validated SOA as an IT architecture paradigm that can be leveraged in many ways. Taking data storage, scalability and application performance to a nifty level using SOA Application Grid infrastructure will no doubt enhance data and application performance on Oracle architecture platforms, it also has the promise of a cost effective and efficient IT delivery model. The very benefits of SOA.

@MicroservicesExpo Stories
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
Many IT organizations have come to learn that leveraging cloud infrastructure is not just unavoidable, it’s one of the most effective paths for IT organizations to become more responsive to business needs. Yet with the cloud comes new challenges, including minimizing downtime, decreasing the cost of operations, and preventing employee burnout to name a few. As companies migrate their processes and procedures to their new reality of a cloud-based infrastructure, an incident management solution...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
Gaining visibility in today’s sprawling cloud infrastructure is complex and laborious, involving drilling down into tools offered by various cloud services providers. Enterprise IT organizations need smarter and effective tools at their disposal in order to address this pertinent problem. Gaining a 360 - degree view of the cloud costs requires collection and analysis of the cost data across all cloud infrastructures used inside an enterprise.
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
Our work, both with clients and with tools, has lead us to wonder how it is that organizations are handling compliance issues in the cloud. The big cloud vendors offer compliance for their infrastructure, but the shared responsibility model requires that you take certain steps to meet compliance requirements. Which lead us to start poking around a little more. We wanted to get a picture of what was available, and how it was being used. There is a lot of fluidity in this space, as in all things ...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).
Admiral Calcote - also known as Lee Calcote (@lcalcote) or the Ginger Geek to his friends - gave a presentation entitled Characterizing and Contrasting Container Orchestrators at the 2016 All Day DevOps conference. Okay, he isn't really an admiral - nor does anyone call him that - but he used the title admiral to describe what container orchestrators do, relating it to an admiral directing a fleet of container ships. You could also say that they are like the conductor of an orchestra, directing...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Recent survey done across top 500 fortune companies shows almost 70% of the CIO have either heard about IAC from their infrastructure head or they are on their way to implement IAC. Yet if you look under the hood while some level of automation has been done, most of the infrastructure is still managed in much tradition/legacy way. So, what is Infrastructure as Code? how do you determine if your IT infrastructure is truly automated?
Every few years, a disruptive force comes along that prompts us to reframe our understanding of what something means, or how it works. For years, the notion of what a computer is and how you make one went pretty much unchallenged. Then virtualization came along, followed by cloud computing, and most recently containers. Suddenly the old rules no longer seemed to apply, or at least they didn’t always apply. These disruptors made us reconsider our IT worldview.
As people view cloud as a preferred option to build IT systems, the size of the cloud-based system is getting bigger and more complex. As the system gets bigger, more people need to collaborate from design to management. As more people collaborate to create a bigger system, the need for a systematic approach to automate the process is required. Just as in software, cloud now needs DevOps. In this session, the audience can see how people can solve this issue with a visual model. Visual models ha...