Welcome!

Microservices Expo Authors: Dalibor Siroky, Elizabeth White, Pat Romanski, John Katrick, Liz McMillan

Related Topics: Microservices Expo, Industrial IoT, Recurring Revenue

Microservices Expo: Article

Improving the Efficiency of SOA-Based Applications

Using an Application Grid with large XML documents to build SOA applications that scale linearly and predictably

According to Moore's Law [1], processing speed and storage capacity have been doubling about every two years since the invention of the integrated circuit in 1958.

Yet it seems that our propensity for building larger more complex software systems that anticipate these improvements inevitably outpace the exponential growth in capacity to support these systems. SOA is becoming more broadly adopted, along with the practice of using XML as a means of communicating data between services and the more rapid adoption of applications to Internet scale. Staring you in the face of your application's success, the potential to overwhelm your systems has become very real, and may happen at times when you least expect it.

How do we get ahead of this trend? Given that memory and storage are always increasing in the realm of enterprise computing, software needs to keep up with the pace. We need to architect from the beginning using the proper approach toward achieving linear scalability with predictable latency. Data files and feeds are increasing in size, requiring more processing, and becoming more cumbersome to manage with software designed to materialize entire files before consuming them. In some cases, the operations that are to be performed require multiple input sources to be consumed before processing can begin.

Those who are building the eXtreme Transaction Processing (XTP) style of applications - such as Telco call setup and billing, online gaming, securities trading, risk management, and online travel booking - understand this challenge well. The broader use case that is applicable across more industries is web applications that need to scale up to Internet volumes, against backend systems that were never designed to handle that kind of traffic.

Boundary Costs
In discussions with customers about scaling a SOA with predictable latency, the term that often comes up is "Boundary Costs." To put this in context, consider the following scenario - an XML document that may have originated from an internal application, database, an external business partner, or perhaps converted from an EDI document, needs to be processed by a number of services, which are coordinated by a BPEL process or an ESB process pipeline. The common approach is to place the XML document on the bus and have the bus invoke the services in accordance with the process definition, passing the XML document as part of the service request payload. Each service that needs to process that data will access the XML accordingly. Interaction with a database may also occur. This approach, as illustrated in Figure 1, sounds simple enough.

Figure 1: Calling services using BPEL process or Service Bus pipeline

However, in practice there are challenges to scalability when using this approach. What is the cost of crossing the boundary from one service to the next? How many times does that cost get incurred in the context of invoking a simple business process? What if the XML document is really large in the multi-megabyte range, or there are lots of them numbering in the thousands, or both?

Compounding this challenge is the reality that most IT environments are a mixture of platforms and technologies. Regardless of how efficient your process engine or service bus might be, the processing at the service endpoint might still become a bottleneck. A recent conversation at a customer site revealed a 15-step business process that normally takes 15 seconds to run, but of late under peak loads it is violating its 30-second SLA. The developers had spent the better part of the past two years optimizing and tuning every last bit of performance out of each one of those 15 services, and the remaining culprit identified for the poor end-to-end latency is the boundary cost between the services. A detailed examination revealed that each of the 15 service calls was spending 1-2 seconds in an open source web service toolkit doing parsing and marshaling of the XML payload. This is not intended to be a disparaging comment about open source web services toolkits, but is simply illustrating the point that parsing and marshaling of XML at the endpoints can introduce latency that can add up pretty quickly.

As illustrated in Figure 2, each service invoked needs to read the XML payload from its on-the-wire serialization form, and parse the XML into a native Java or .NET object form to be processed by the business logic. In addition if database interaction is required, then there is an additional object to relational mapping that needs to occur. Finally, the inverse of those steps needs to occur in order to generate a response to the service request and send that along to the next downstream service in accordance with the business process that is coordinating the interaction between the services.

Figure 2: Service request boundary cost between XML to Object to Relational and back again for each invocation

A popular approach for dealing with XML in a SOA is to use web services and XMLBeans. Using XMLBeans, objects are typically created by fully materializing the inputs and outputs, as this allows for maximum usability and processing. In-memory processing may include sorting, filtering, or aggregation operations, all of which increase the overall memory required to deal with each call. This strategy is not scalable and cannot be applied to many of the use cases in this area. Many products support streaming of XML, but this may limit the ability to do anything meaningful without putting the data somewhere else first.

What if there was a way to take this information and store it in an application grid, a place where the size of the data and the processing capability can far eclipse that of any single machine or process? The application grid can utilize the combined memory and processing power of multiple machines in order to complete an operation, such as the application of a complex formula or filter across an enormous data set. The application grid also provides the ability to hold the data for longer periods of time beyond the cycle of a single service request, survive server restarts, and even work across network boundaries.

If we could combine the power of the grid for data storage and manipulation with the efficiency of streaming, the result would be a highly scalable system capable of processing much more information than before. Using a combination of complementary technologies here, we achieve our goal of spreading compute operations across a distributed network of machines, and we lessen the processing and memory requirements of our data consumers - SOA services, application servers, and client applications. We also remove the need to use a database for intermediate storage of data while it is (or simply so it can be) processed. By using an application grid we can also implement patterns where we pass around references to data, rather than the data, resulting in huge efficiency gains in the communications layer, and dramatically reducing or eliminating the boundary cost.

This article includes a code example that covers the use case of processing large XML files in an application grid. In a typical XML file, there are a usually elements that repeat without any pre-determined limit. Using a STAX parser to handle streaming XML, and JAXB to handle conversion between XML and Java objects, we can extract these repeating elements from the XML stream and put them on the application grid as individual objects. The implementation can populate the grid with these objects, and do so with a limited amount of memory consumption. Once populated, the grid can process the data across the multiple machines that constitute the grid. Each grid member processes an operation or a filter and passes intermediate results to the grid client, which then assembles them into a final result set.

What Is an Application Grid?
An application grid is a horizontally scalable agent based in an in-memory storage engine for application state data. This effectively provides a distributed shared memory pool that can be linearly scaled across a heterogeneous grid of machines that consists of any combination of high-end and lower-cost commodity hardware. Use of an application grid in an application simultaneously provides performance, scalability and reliability to in-memory data.

One way that an application utilizes an application grid is to use API-level interfaces that mimic the Java Hashmap, .NET Dictionary, or JPA interfaces. An alternate approach is to use a service-level interface from a SOA environment. As applications or services place data into the application grid, a group of constantly cooperating caching servers coordinate updates to data objects, as well as their backups, using cluster-wide concurrency control.

As shown in Figure 3, the request to put data to the map is taken over by the application grid and transported across a highly efficient networking protocol to the grid node P, which owns the primary instance data. The primary node in turn copies the updated value to the secondary node B for backup, and then returns control to the service.

Figure 3: Application grid clustering ensures primary / backup of in-memory data on separate machines.

The application grid stores data across multiple machines with complete location transparency as it sees fit. A unique hash key value is all that is necessary to retrieve the stored data at a future point, regardless of where the application grid chose to store the data. This prevents the application logic from dealing with complex location dependencies and manual partitioning schemes. If one or more nodes in the grid fails, or can't be reached due to network failure, the application grid will immediately react to the failure and rebalance the data across the remaining healthy nodes. This can happen even if the failing node had been participating in an autonomous update operation. In Figure 4, the primary owner ‘P' of a piece of data fails while in the midst of retrieving data for the service. The get() request is immediately routed to the backup node and a new primary / backup pair is allotted.

Figure 4:  Application grid provides continual failover of in-memory state data

This data stored in the grid can be anything from simple variables to complex objects or even large XML documents. In our case we chose to fragment what would have been very large XML documents into smaller parts and store those XML fragments as Java objects in the application grid. This allows us to do parallel queries against the data using the Java APIs.

The application grid supports a range of operations including parallel processing of queries, events, and transactions. For large datasets, an entire collection of data may be put to the grid as a single operation, and the grid can disperse the contents of the collection across multiple primary and backup nodes in order to scale. In more advanced applications, the grid may even execute business logic directly and in parallel on data storage nodes, and do so with data and logic affinity such that the logic executes on the same machine that is storing the data that the logic is operating on.

More Stories By Dave Chappell

David Chappell is vice president and chief technologist for SOA at Oracle Corporation, and is driving the vision for Oracle’s SOA on App Grid initiative.

More Stories By Andrew Gregory

Andrew Gregory is currently a Sales Consultant at Oracle Corporation. He has worked in Development, Product Support, Infrastructure, and Sales over 13 years in the industry.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
jhv1blz5 07/03/09 10:31:00 AM EDT

The article validated SOA as an IT architecture paradigm that can be leveraged in many ways. Taking data storage, scalability and application performance to a nifty level using SOA Application Grid infrastructure will no doubt enhance data and application performance on Oracle architecture platforms, it also has the promise of a cost effective and efficient IT delivery model. The very benefits of SOA.

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.