Welcome!

SOA & WOA Authors: Carmen Gonzalez, Elizabeth White, Keith Cawley, Jason Bloomberg, Lori MacVittie

Related Topics: SOA & WOA

SOA & WOA: Article

ESB Integration Patterns

An insider's look into SOA's implementation backbone

The past several years have seen some significant technology trends, such as service-oriented architecture (SOA), enterprise application integration (EAI), business-to-business (B2B), and Web services. These technologies have attempted to address the challenges of improving the results and increasing the value of integrated business processes, and have garnered the widespread attention of IT leaders, vendors, and industry analysts. The enterprise service bus (ESB) draws the best traits from these and other technology trends to form a new architecture for integration. The ESB concept is a new approach to integration that can provide the underpinnings for a loosely coupled integration network that can scale beyond the limits of a hub-and-spoke EAI broker.

An ESB is a highly distributed, event-driven, enterprise SOA that is geared toward integration. It is a standards-based integration platform that combines messaging, Web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications across extended enterprises with transactional integrity. An extended enterprise represents an organization and its business partners, which are separated by both business boundaries and physical boundaries. In an extended enterprise, even the applications that are under the control of a single corporation may be separated by geographic dispersion, corporate firewalls, and interdepartmental security policies.

An ESB is designed to be pervasive, meaning that it is capable of spanning the extended enterprise. But an ESB is also pervasive in the sense that it is capable of being used as a general-purpose integration environment that is suitable for any project, no matter how large or how small.

The SOA of the ESB
An ESB is the implementation backbone for a loosely coupled, event-driven SOA that enables a highly distributed universe of named routing destinations across a multi-protocol message bus.

An SOA provides an integration architect with a broad abstract view of applications and integration components to be dealt with as high-level services. Service components in an ESB expose coarse-grained, message-driven interfaces for the purpose of sharing data between applications, both synchronously and asynchronously. In an ESB, applications and event-driven services are connected through the bus as abstract endpoints. These abstract endpoints are tied together in a loosely coupled SOA, which allows them to operate independently from one another. An integration architect uses an ESB to tie together assemblies of abstract endpoints that form composite business processes, or process flows (see Figure 1).

What the endpoints actually represent can be very diverse. For example, an endpoint may represent a discrete operation, like a specialized service for calculating sales tax. The underlying implementation of the endpoint could represent a local binding to an application adaptor, or a callout to an external Web service. The applications and services can be physically located anywhere that is accessible by the bus.

Itinerary-Based Routing
In an ESB, data is passed between endpoints using messages. The coordination of the message passing is done using an ESB concept known as itinerary-based routing. A message itinerary is metadata that gets carried with a message that provides a list of forwarding addresses. The itinerary is a set of instructions telling the ESB invocation framework which endpoints the message needs to be delivered to as it travels from endpoint to endpoint across the bus. Itineraries contribute to the distributed nature of the ESB architecture by eliminating the dependency on a centralized routing engine, which could potentially be a single point of failure. They are intended for relatively finite microflows of messages. Simple branching and merging of routing paths can be achieved through integration patterns that take advantage of specialized splitter and aggregator services. More sophisticated process orchestrations are also possible using specialized orchestration engines that can be layered onto the bus as additional services.

Configuration, Not Coding
The mantra of the ESB is "configuration rather than coding." In an ESB, abstract endpoints, which are accessible through application adapters, message queues, Web services invocations, and a variety of other protocols, are configured through a tool interface rather than coded into applications. It's not that there's anything wrong with writing code, but there's plenty of code to be written elsewhere that doesn't have to do with hard-wiring interdependencies between applications and services.

With its distributed deployment infrastructure, an ESB can efficiently provide central configuration, deployment, and management of services that are distributed across the extended enterprise. Artifacts that affect the behavior of an integration service, such as an XSLT stylesheet that can be used by a data transformation service, are also configurable in an ESB.

The ESB Service Container
The highly distributed nature, and the ESB mantra of "configuration rather than coding" is largely due to traits of the ESB service container. A service container is the physical manifestation of the abstract endpoint, and provides the implementation of the service interface. A service container is a remote process that can host software components.

A service container is simple and lightweight, but it can have many discrete functions. As shown in Figure 2, service containers take on different roles as they are deployed across an ESB.

In its simplest form, a service container is an operating system process that can be managed by the ESB's invocation and management framework. A service container provides a number of facilities for the service implementation such as event dispatch, thread management, security (encryption, authentication, and access control), and QoS via reliable message delivery. Unlike its distant cousins, the J2EE application server container and the EAI broker, the ESB service container allows the selective deployment of integration functionality exactly when and where you need it, and nothing more than what you need.

A service container can host a single service, or can combine multiple services in a single container environment (see Figure 3).

An ESB service is also scalable in a fashion that is independent of all other ESB services. A service container may manage multiple instances of a service within a container. Several containers may also be distributed across multiple machines for the purposes of scaling up to handle increased message volume (see Figure 4).

The ESB Service Interface
The ESB container provides the message flow in and out of a service. It also handles a number of facilities, such as service life cycle and itinerary management. As shown in Figure 5, the container manages an entry endpoint and an exit endpoint, which are used by the container to dispatch a message to and from the service.

Messages are received by the service from a configurable entry endpoint. Upon completion of its task, the service implementation simply places its output message in the exit endpoint to be carried to its next destination. The next destination may be a reply to the original sender of the message, or more often may be sent along to the next leg of its journey using a forwarding address. The output message may be the same message that it received. The service may modify the message before sending it to the exit endpoint. Or, in the service may create a completely new message to serve as a "response" to the incoming message and send the new message in the exit endpoint.

What is placed in the exit endpoint depends on the context of the situation and the message being processed. In the case of a content-based routing (CBR) service, the message content will be unchanged, with new forwarding addresses set in the message header.

In more sophisticated cases, one input message can transform into many outputs, each with its own routing information. For example, a splitter service can receive a purchase order document, split it into multiple output messages, and send out the purchase order and its individual line items as separate messages to an inventory or order fulfillment service. The service implementation in this case does not have to be written using traditional coding practices; it can be implemented as a specialized transformation service that applies an XSLT stylesheet to the purchase order document to produce the multiple outputs.

Process Tracking and Error Handling
In addition to a normal exit endpoint to handle the outgoing flow of a message, additional destinations are available to the service for auditing the message and for reporting errors. The tracking endpoint can be utilized to monitor the progression of a message as it travels through a business process. Tracking can be handled at both the individual service level and the business-process level. From the service implementation's point of view, it simply places data into the tracking endpoint or fault endpoint, and the surrounding ESB invocation and management framework takes care of the tracking and error reporting. This approach provides a separation between the implementation of the service and the details the surrounding fault handling. The implementer of a service need only be concerned that it has a place to put such information, whether it is information concerning the successful processing of good data, or the reporting of errors and bad data.

Integration Patterns
One of the many benefits of using itinerary-based routing to coordinate the interactions between discrete integration services is the ease with which integration patterns can be created and reused to solve common integration challenges. A message itinerary can be a powerful and flexible tool for intercepting the path of a message and performing operations on it, thus adding value to the integration environment. Through configuration and management tools, additional processing steps can be inserted into a business process definition as event-driven services into an XML processing pipeline. The following describes two of the common integration patterns in use today: the "VETO" pattern, and a variation known as the "VETRO" pattern.

The VETO Pattern
VETO is a common integration pattern that stands for Validate, Enrich, Transform, Operate (see Figure 6). The VETO pattern and its variations can ensure that consistent, validated data will be routed throughout the ESB.

Validate
The "Validate" step is usually the first part of any ESB process and can be accomplished in a number of ways. It's important that if possible, this step happen independently; this removes the burden of validation from all of the downstream service implementations and promotes reuse. Building validation directly into the first service of a process makes it difficult to insert an additional service in front of it without requiring that the new service also provide its own validation.

An example of validation is to simply verify that an incoming message contains a well-formed XML document and conforms to a particular schema or WSDL document that describes the message. This requires that the service always have available the up-to-date XML schema for a particular message type. The schema and WSDL can be kept in the directory service and managed remotely by the management infrastructure of the ESB. A service may also have scripting associated with it, which can be made available to the service as a configuration parameter

If the target data is not in XML format, or if there is no schema or WSDL available, then a custom service can be used to validate the incoming message.

Enrich
The "Enrich" step involves adding additional data to a message to make it more meaningful and useful to a target service or application. The Enrich service could be implemented to invoke another service to look up additional data, or it could access a database to get what it needs.

Transform
The "Transform" step converts the message to a target format. This often involves converting the data structure to an internal canonical format, or converting from the canonical format to the target format of the "Operate" step. The target system may have its own built-in validation rules requiring that the transformation step modify the incoming data in order to prevent the target system from rejecting the message. In this sense, the transformation step is also providing pre-validation protection in a separate service that can be separately managed. While this may mean redundant logic in the short term, it provides more flexibility in the long term, because it allows the "Operate" step to focus on business logic.

Operate
The "Operate" step is the invocation of the target service or an interaction with the target application. If the target operation is an enterprise application that requires its own data format, then the previous transformation step converts the message to the target format required by the application.

Variations: The VETRO Pattern
The VETO pattern has many variations. One such variation is the VETRO pattern, which includes a "Route" step such as a content-based router service (Figure 7).

In some cases the validate, enrich, and transform steps can be accomplished in one service implementation. For example, a CBR service may use a script-based validation directly in the service itself, rather than using a separate service. This may provide some convenience, particularly if the context of validation can't easily be applied to other uses. However, keeping them as separate services further promotes loose coupling and service reuse, and allows the validation to be separately defined and managed. Through the flexibility of configuration and deployment, that choice can be revisited over time without affecting all of the application endpoints that use the pattern. The stages of the VETO pattern can be implemented as separate services that can be configured, reused, and independently swapped out for alternate implementations.

The VETO concept is profoundly simple, yet is at the heart of what an integration architect does regularly with an ESB. An ESB provides an event-driven SOA for applications in an integration fabric. Regardless of the process routing and orchestration method being used - whether itineraries or the more sophisticated process modeling using an orchestration service - it is the use of integration patterns such as VETO and its variations that provide the overall value and flexibility to the integration fabric.

Summary
I hope that this brief introduction to the ESB and its use of integration patterns has provided you with insight into the internal workings of the ESB, and given you a sense of how an integration architect can use event-driven components as services to construct reusable integration patterns in an enterprise SOA. The VETO pattern is one of many being used in ESB-based integrations.

I encourage you to learn more about the ESB as a technology concept, for it is already rapidly changing the way integration is being done across a variety of industries. So get reading, and get on the bus!

More Stories By Dave Chappell

David Chappell is vice president and chief technologist for SOA at Oracle Corporation, and is driving the vision for Oracle’s SOA on App Grid initiative.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have spoken with, or attended presentations from, utilities in the United States, South America, Asia and Europe. This session will provide a look at the CREPE drivers for SmartGrids and the solution spaces used by SmartGrids today and planned for the near future. All organizations can learn from SmartGrid’s use of Predictive Maintenance, Demand Prediction, Cloud, Big Data and Customer-facing Dashboards...
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Whether you're a startup or a 100 year old enterprise, the Internet of Things offers a variety of new capabilities for your business. IoT style solutions can help you get closer your customers, launch new product lines and take over an industry. Some companies are dipping their toes in, but many have already taken the plunge, all while dramatic new capabilities continue to emerge. In his session at Internet of @ThingsExpo, Reid Carlberg, Senior Director, Developer Evangelism at salesforce.com, to discuss real-world use cases, patterns and opportunities you can harness today.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...