Microservices Expo Authors: John Katrick, Pat Romanski, Gordon Haff, Liz McMillan, Elizabeth White

Related Topics: @DXWorldExpo, Artificial Intelligence, @ThingsExpo

@DXWorldExpo: Blog Feed Post

The Three Phases of Digital Transformation | @ExpoDX #DX #AI #BigData #Analytics

Digital Transformation is about creating or enabling new business models; it’s not about improving existing business processes

The research firm Technology Business Research (TBR) recently came out with a report titled, “Winning The Business Of Digital Transformation Services Requires A Process-Led Approach” authored by Sebastian Lagana and Jennifer Hamel. The report is full of good nuggets, but I especially liked the way that they categorized the 3 phases of Digital Transformation:

  • Substitution represents basic IT modernization; such as leveraging new consumption models (e.g., cloud, “as a Service”) to directly replace functions and costs that already exist in an enterprise. Shifting from on-premises to cloud can generate tangible cost savings for an organization; however, it does not have a large impact on how an organization goes to market, better serves their customers or optimizes their key business processes.
  • Extension is where disruptive technologies (e.g., data science, artificial intelligence, machine learning, data lake, IOT, blockchain) are folded into an environment to provide an organization with capabilities not available otherwise. For example, analytics frameworks are folded into existing applications to enhance the velocity and visibility of data to managers and deliver recommendations that facilitate increasingly rapid and defensible decision-making.
  • Transformation is the Holy Grail; hence it represents the overarching goal of Digital Transformation. Truly transforming one or more business processes is a complex effort that requires a process centric to transforming an organization’s business models, coupled with scale-out and elastic foundational technologies.

I think this categorization is spot on. Today, the vast majority of companies are stuck on the “Substitution” phase, where IT organizations are spending considerable attention and effort “paving the cow path,” which provides marginal cost savings, but misses the bigger business opportunities offered by the “Extension” and “Transformation” phases. And I believe the problem starts with the below understanding:

Digital Transformation is about creating or enabling new business models; it’s not about improving existing business processes.

As the title of the TBR research paper highlights, to get out of the “Substitution Quagmire” requires a business-centric, business-accountable process that provides a roadmap for moving organizations from the Substitution to the Extension and Transformation phases.

Dell EMC Consulting created the Big Data Business Model Maturity Index as a guide for helping an organization understand how to become more effective at leveraging data and analytics to power its business models; to move beyond just optimizing the organization’s key operational and business processes (see Figure 1).

Figure 1: Effectiveness at Leveraging Data and Analytics to Power Business Models

We use the term “Metamorphosis” as the final phase of the Business Model Maturity Index because it more accurately reflects the cultural, management and business model changes that organizations must address to successfully digitally transform their organizations. Metamorphosis is a complete change in form and function from one stage to the next in the life of an organism, as from the caterpillar to the pupa to the adult butterfly.

Figure 2 provides more details on each of the phases of the Big Data Business Model Maturity Index.

Figure 2: Big Data Business Model Maturity Model Details

The TBR Digital Transformation phases of Substitution, Extension and Transformation map very well to the Big Data Business Model Maturity Index, which hopefully means that we can leverage our learnings from using the Business Model Maturity Index with customers to help guide organizations’ digital transformation initiatives (see Figure 3).

Figure 3: Mapping DX Phases to the Business Model Maturity Index

Let’s review what we learned from the Big Data Business Model Maturity Index engagements that we can re-purpose for organization’s embarking on their digital transformation journey. The blog “Big Data Business Model Maturity Index Guide” provides recommendations on the steps required to transition from one stage to the next in the Business Model Maturity Index. However, I’ve copied a summary of that blog below because it’s a lot easier for me to cut and paste than it is for you to click back and forth between the blogs.

Steps to Progress from Monitoring to Insights
The Insights stage is about coupling the wealth of internal and external data with predictive analytics to uncover insights about the organization’s key business and operational processes.

  • Identify Key Business Decisions. Identify and understand the decisions that the key business stakeholders need to make to support an organization’s key business initiatives
  • Create Analytics Sandbox. Provide an analytics environment that allows the data science team to rapidly ingest data, explore the data, and test the data for its predictive capabilities in a fail fast environment.
  • Deploy Predictive Analytics. Leverage predictive analytics to uncover individuals’ relevant behaviors (e.g., tendencies, propensities, preferences, patterns, trends, interests, passions, affiliations, associations).
  • Deploy Right-time Analytics. Create “right time” analytics capabilities that can flag anomalies and behavioral changes that might be worthy of analysis.
  • Train Business Users. Train business users to “Think like a Data Scientist” in identifying variables and metrics that might be better predictors of business performance.
  • Capture Analytic Insights. Capture and catalogue analytic insights that are being uncovered about your key business entities.

Steps to Progress from Insights to Optimization
The Optimization stage applies prescriptive analytics to deliver recommendations to customers, front-line employees, and partners to improve effectiveness of the organization’s key business processes.

  • Evaluate Insights Business Relevance. Assess the potential business value of the Analytic Insights captured in the Insights phase using the S.A.M. (Strategic, Actionable, Material) methodology.
  • Deploy Prescriptive Analytics. Build prescriptive analytics to deliver actionable recommendations to the key business entities that support key business decisions and use cases.
  • Deploy Data Lake. Build a Data Lake that supports the capture, refinement and sharing of the organizations data and analytic digital assets (collaborative value creation platform).
  • Leverage Application Development. Operationalize the recommendations by leveraging modern application development techniques to integrate the results into web sites, mobile apps, dashboards, and reports.
  • Measure Decision Effectiveness. Tag the recommendations in order to determine their effectiveness. Use the results of the effectiveness measurements to fine-tune the analytic models.

Steps to Progress from Optimization to Monetization
The Monetization stage leverages the analytic learnings from the Optimization phase to create net new revenue opportunities; that is, leveraging the analytic insights to identify unmet customer and market demand that provide new revenue opportunities for new customers, products, services, audiences, markets, channels and partnerships.

  • Operationalize Analytic Insights. Capture, catalogue and operationalize the captured customer, product, operational and market insights in analytic profiles (stored in the data lake) that can then be shared across multiple business use cases.
  • Identify Monetization Opportunities. Run envisioning exercises with key business stakeholders to identify and assess the value of insights as they relate to new revenue opportunities.
  • Prove ROI. Conduct a Proof of Value where the data science team can collaborate with the business stakeholders to determine if the analytics can be turned into new revenue opportunities.
  • Operationalize New Products/Services. If there is a compelling ROI and the analytic models can generate the necessary lift, then push the new revenue opportunities to market. Instrument the rollout to monitor the monetization effectiveness and make right-time course corrections.

Steps to Progress from Monetization to Metamorphosis
The Metamorphosis stage exploits the organization’s cumulative knowledge about their data and the resulting customer, product, service, operational and market analytics to metamorphosize the organization’s business model including rewards, hiring, promotions, culture and management structure that embraces the economic value of the organization’s data.

  • Create New Business Models. Consider your customers’ reasons for doing business with you; that is, what are they trying to accomplish from a more holistic perspective – retirement, health, funding college, vacation, meals, entertainment, buying a house, transportation, etc. Leverage your customer, product and operational insights to transform your business model to more easily integrate or embed into the life, or business model, of your customers and partners.
  • Create Analytics Platform. Extend your analytics platform to incorporate customer-facing interactivity where customers and partners can develop new apps that integrate into their business operations.
  • Enable Third-Party App Developers. Determine how to enable, scale and secure the analytics platform so that third-party application developers can develop, market, sell and support new value-added applications.

But now let me add a new task:

Operationalize the Economic Value of Data. Yea, this is a new one because at the time of creating the original Business Model Maturity Index, we just didn’t know what we know today about the economic value of data. However, digital-centric organizations are realizing that the digital assets of data and analytics exhibit economic characteristics unlike that of any other organization assets; that these digital assets can be used across an infinite number of use cases and never wear out and never deplete.

Yes, “Data is the New Sun”!

Figure 4 summarizes the tasks required to transition from Monitoring (Substitution) through Insights and Optimization (Extension) to Monetization and Metamorphosis (Transformation).

Figure 4: Big Data Business Model Maturity Index Guide

The TBR report closes by stating:

We expect the next 12 to 18 months will be critical in establishing leaders and laggards in the market, with successful vendors defining their value proposition by transitioning the conversation from an ideological discussion to a targeted road map outlining specific benefits to transforming a given business process.

Yea, we’re ready to help our clients to ensure that “journey” does not become an “ordeal”!

The post The 3 Phases of Digital Transformation appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@MicroservicesExpo Stories
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The general concepts of DevOps have played a central role advancing the modern software delivery industry. With the library of DevOps best practices, tips and guides expanding quickly, it can be difficult to track down the best and most accurate resources and information. In order to help the software development community, and to further our own learning, we reached out to leading industry analysts and asked them about an increasingly popular tenet of a DevOps transformation: collaboration.
"We are an integrator of carrier ethernet and bandwidth to get people to connect to the cloud, to the SaaS providers, and the IaaS providers all on ethernet," explained Paul Mako, CEO & CTO of Massive Networks, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
We call it DevOps but much of the time there’s a lot more discussion about the needs and concerns of developers than there is about other groups. There’s a focus on improved and less isolated developer workflows. There are many discussions around collaboration, continuous integration and delivery, issue tracking, source code control, code review, IDEs, and xPaaS – and all the tools that enable those things. Changes in developer practices may come up – such as developers taking ownership of code ...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
With continuous delivery (CD) almost always in the spotlight, continuous integration (CI) is often left out in the cold. Indeed, it's been in use for so long and so widely, we often take the model for granted. So what is CI and how can you make the most of it? This blog is intended to answer those questions. Before we step into examining CI, we need to look back. Software developers often work in small teams and modularity, and need to integrate their changes with the rest of the project code b...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
"Cloud4U builds software services that help people build DevOps platforms for cloud-based software and using our platform people can draw a picture of the system, network, software," explained Kihyeon Kim, CEO and Head of R&D at Cloud4U, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
How often is an environment unavailable due to factors within your project's control? How often is an environment unavailable due to external factors? Is the software and hardware in the environment up to date with the target production systems? How often do you have to resort to manual workarounds due to an environment? These are all questions that you should ask yourself if testing environments are consistently unavailable and affected by outages. Here are three key metrics that you can tra...