Welcome!

Microservices Expo Authors: Automic Blog, Elizabeth White, Dalibor Siroky, XebiaLabs Blog, John Katrick

Related Topics: @DXWorldExpo, Machine Learning , Artificial Intelligence

@DXWorldExpo: Blog Post

Should #ArtificialIntelligence Fool You? | @ExpoDX #AI #DX #DigitalTransformation

Common sense, of course, is one area where humans still run circles around the best AI available today

In the 67 years since Alan Turing proposed his Imitation Game - the infamous ‘Turing test' for artificial intelligence (AI) - people have been confused over the very purpose of AI itself.

At issue: whether the point of AI is to simulate human behavior so seamlessly that it can fool people into thinking they are actually interacting with a human being, rather than a piece of software.

Such deception was never the point of Turing's exercise, however. Rather, he realized that there was no way to define true intelligence, and thus no way to test for it. So he came up with the game as a substitute - something people could theoretically test for.

Regardless of Turing's intentions, setting the bar for AI based on its ability to snooker an audience has become fully ingrained in our culture, thanks in large part to Hollywood.

The AI We Love - and Love to Hate
Ever since the 1927 film Metropolis, filmmakers have realized that humans had to play the role of any intelligent machine - simply because having a machine do its own acting made for bad theater.

We simply want and expect humans to play all the characters in our entertainment, regardless of whether they appear to be machines or animals or celestial beings, or any other character, anthropomorphic or not.

It's no wonder, then, that we crave AI as intelligent as Star Trek's Lt. Cmdr. Data or Star Wars' C3PO, and we fear AI the likes of The Terminator's Skynet or Hal 9000 from 2001: A Space Odyssey. For good or evil, our context for AI is a machine that has convincing human traits, because we require a human to play the part.

A popular trope in such productions is the argument over whether such a computer is truly a self-aware, sentient being - or is it simply programmed to act that way.

If the former, then we must assign it the rights we assign humans. If the latter, then it is merely a machine, unworthy of even the most basic courtesies due a human. After all, there's no point in thanking or cursing a machine, is there?

Turing realized that he couldn't answer this question, even if he had the luxury of a tête-à-tête with Data and C3PO in person. Instead, he proposed the Imitation Game as a thought exercise to suggest a question he could answer - not as a goal of AI.

Today's AI technology, in any case, is nowhere near Data or C3PO or Skynet or any of the other human-like, AI-driven machines of fiction. Nevertheless, in spite of Turing's true intentions, the goal of human-like behavior sufficiently accurate to fool people remains one of the primary goals of many AI initiatives, for better or worse - and mostly for the worse.

‘Human-Fooling' vs. ‘Human-Like' Behavior
We may not be hiding today's AI behind the Turing test's curtain as a rule, but many innovators still use the ‘good enough to fool people' metric as a goal of their software.

However, if we take a closer look at the current state of the AI market, it's clear that there's a difference between merely ‘human-like' behavior and behavior that could actually fool people into thinking the AI was actually a person.

Controlling our smartphones or Amazon Echoes with voice commands are examples. Yes, such devices answer with a human-like voice, but their creators aren't trying to fool anyone that such devices are actually sentient - nor should they.

Image recognition, including facial recognition, is another example. Yes, we appreciate the human-like ability when a computer can identify a person in a video, again without the expectation that we're fooling anyone into believing such software has anything resembling human intelligence.

At the other extreme, technologies like virtual assistants actively seek to fool people. If you call a big company's toll-free number, the reasoning goes, then you, the consumer, will have a better experience if the voice on the other end of the line can carry on a real conversation.

Here's the rub: in reality, there's a line between human-like and human-fooling behavior, and if a virtual assistant crosses the line, it simply becomes annoying.

If that smooth voice apologizes for not understanding me, with a touch of contrition in the tone of its voice, I don't actually feel better - because it's not a true apology. It is by definition spurious. Nobody is actually sorry.

What we actually want from such voice interfaces is language understanding, accuracy, and efficiency, as anyone would want when they ask their phone for directions. I don't want additional verbiage or emotional nuance solely meant to fool me into thinking I'm interacting with a human.

Do We Want ‘Artificial Stupidity'?
Predictably, various organizations have staged Turing tests over the years, offering prizes to the program best able to fool people into thinking it was human. In 1991, a simplistic program won the first Loebner Prize for AI in large part because it shrewdly inserted typos into its output.

The hapless humans judging the contest were fooled, of course - but not because of the program's intelligence, but rather due to its programmed stupidity.

Typos or no, programmers looking to win such contests have long realized that in order to win, their AI programs couldn't appear to be too smart, or people would obviously think they were interacting with a machine. So the coders would intentionally dumb down the output in hopes of a more convincing human simulacrum.

The question we're facing today is whether there are any true business contexts for AI where we really want to dumb our programs down in order to make them sufficiently human-like to fool people.

Taking as a given that killer robots are still well in the future, the obvious answer is that today's AI is barely smart enough as it is - let alone if we ever decided we needed to make it stupider.

On the contrary, researchers and vendors alike are actively innovating ever smarter AI - but not smarter in the sense of better able to fool people.

After all, there are other characteristics of human intelligence that we're actively pursuing in our AI advancement, including better understanding of human language, judgment sufficient to make business decisions, and the most elusive goal of all: simple common sense.

In some cases, today's AI can actually exceed human ability. Google Translate, for example, cannot yet match the ability of human translators for any pair of languages, but its remarkable capacity to translate between any of 103 languages exceeds any individual human translator's ability.

AI-based judgment also generally falls short of human instincts, except when it comes to making judgment calls based upon vast quantities of data. To be sure, the overlap between AI and Big Data exceeds the human ability to leverage large data sets in our all-too-small brains.

Common sense, of course, is one area where humans still run circles around the best AI available today. Stories like the driverless car that broadsided the white semi because it couldn't tell it wasn't the sky all too frequently remind us of this limitation.

The good news: several vendors are pushing the limits of how much common sense AI can exhibit. Mark my words: when the technology advances to the point that an AI's common sense is better than a human's, we will all breathe more easily.

The Intellyx Take
In addition to human qualities we would like AI to exhibit and eventually excel at, perhaps more powerful are qualities we poor humans might wish to have for ourselves, but do not.

Rapid, tireless processing of data, of course, is one area that computers vastly exceed human capabilities for many years now - and with the addition of AI, that lead will only grow over time.

Other examples of AI excelling where humans are week are less obvious. In today's fake news-infested world, for example, bias-free reasoning is a capability our AI may gain in spite of the fact that humans are inevitably biased in our thinking.

Then again, we may not appreciate unbiased programs, as they are likely to disagree with our own biased perception of the truth. Such is the nature of human bias.

A third area - and perhaps the most controversial - is AI's potential ability to make itself smarter. True, as humans, we can educate ourselves, making us more knowledgeable and perhaps with experience, even wiser. But in terms of sheer smarts, we're pretty much stuck with what we're born with.

AI, however, faces no such biological limitations. Research progresses on programs that are smart enough to write other programs - and it's only a matter of time until we have code that can write code-writing software.

Somewhere down this road lie the killer robots of Elon Musk's worst nightmares, to be sure. In my opinion, however, there will be a significant interval of years or even decades between the current state of the art and Skynet - perhaps even a coming ‘golden age' of AI, where our world experiences transformative benefit from AI that behaves little or nothing like humans.

On a final note, AI that excels at tasks humans are poor at, rather than AI that mimics human capabilities too closely, aren't as likely to take many jobs away from people - and in those cases where AI does replace a human worker, there would be a thin argument for keeping that person in the job. And that's no fooling.

Copyright © Intellyx LLC. Intellyx publishes the Agile Digital Transformation Roadmap poster, advises companies on their digital transformation initiatives, and helps vendors communicate their agility stories. As of the time of writing, none of the organizations mentioned in this article are Intellyx customers.

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@MicroservicesExpo Stories
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
Many enterprise and government IT organizations are realizing the benefits of cloud computing by extending IT delivery and management processes across private and public cloud services. But they are often challenged with balancing the need for centralized cloud governance without stifling user-driven innovation. This strategy requires an approach that fundamentally reshapes how IT is delivered today, shifting the focus from infrastructure to services aggregation, and mixing and matching the bes...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
While we understand Agile as a means to accelerate innovation, manage uncertainty and cope with ambiguity, many are inclined to think that it conflicts with the objectives of traditional engineering projects, such as building a highway, skyscraper or power plant. These are plan-driven and predictive projects that seek to avoid any uncertainty. This type of thinking, however, is short-sighted. Agile approaches are valuable in controlling uncertainty because they constrain the complexity that ste...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
DevOps teams have more on their plate than ever. As infrastructure needs grow, so does the time required to ensure that everything's running smoothly. This makes automation crucial - especially in the server and network monitoring world. Server monitoring tools can save teams time by automating server management and providing real-time performance updates. As budgets reset for the New Year, there is no better time to implement a new server monitoring tool (or re-evaluate your current solution)....
We just came off of a review of a product that handles both containers and virtual machines in the same interface. Under the covers, implementation of containers defaults to LXC, though recently Docker support was added. When reading online, or searching for information, increasingly we see “Container Management” products listed as competitors to Docker, when in reality things like Rocket, LXC/LXD, and Virtualization are Dockers competitors. After doing some looking around, we have decided tha...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The benefits of automation are well documented; it increases productivity, cuts cost and minimizes errors. It eliminates repetitive manual tasks, freeing us up to be more innovative. By that logic, surely, we should automate everything possible, right? So, is attempting to automate everything a sensible - even feasible - goal? In a word: no. Consider this your short guide as to what to automate and what not to automate.
identify the sources of event storms and performance anomalies will require automated, real-time root-cause analysis. I think Enterprise Management Associates said it well: “The data and metrics collected at instrumentation points across the application ecosystem are essential to performance monitoring and root cause analysis. However, analytics capable of transforming data and metrics into an application-focused report or dashboards are what separates actual application monitoring from relat...