Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: @CloudExpo, Artificial Intelligence, @DXWorldExpo, @ThingsExpo

@CloudExpo: Blog Feed Post

“Unlearn” to Unleash Your #DataLake | @CloudExpo @Schmarzo #BigData #AI #DX

The Data Science Process is about exploring, experimenting, and testing new data sources and analytic tools quickly

It takes years – sometimes a lifetime – to perfect certain skills in life: hitting a jump shot off the dribble, nailing that double high C on the trumpet, parallel parking a Ford Expedition. Malcolm Gladwell wrote a book, “Outliers,” discussing the amount of work – 10,000 hours – required to perfect a skill (while the exactness of 10,000 hours has come under debate, it is still a useful point that people need to invest considerable time and effort to master a skill). But once we get comfortable with something that we feel that we have mastered, we become reluctant to change. We are reluctant to unlearn what we’ve taken so long to master.

Changing your point of release on a jump shot or your embouchure for playing lead trumpet is dang hard! Why? Because it is harder to unlearn that it is to learn. It is harder to un-wire all those synoptic nerve endings and deep memories than it was to wire them in the first place. It’s not just a case of thinking faster, smaller or cheaper; it necessitates thinking differently.

For example, why did it take professional basketball so long to understand the game changing potential of the 3-point shot? The 3-point shot was added to the NBA during the 1979-1980 season, but for decades the 3-point shot was more a novelty then a serious game strategy. Pat Riley, the legendary coach of the 3-pointer’s first decade in the league (won NBA Championships in 1982, 1985, 1987 and 1988), called it a “gimmick.” Larry Bird, one of that era’s top players said: “I really don’t like it.”

It’s only been within the past 3 years where the “economics of the 3-point shot” have changed the fundamentals of how to win an NBA Championship (see Figure 1).

Figure 1: NBA 3-point Baskets per Season

NBA Coaches and General Managers just didn’t comprehend the “economics of the 3-point shot” and how the 3-point shot could turn a good shooter into a dominant player; that a 40% 3-point shooting percentage is equivalent to a 60% 2-point shooting percentage from a points / productivity perspective. The economics of the 3-point shot (coupled with rapid ball movement to create uncontested 3-point shots) wasn’t full exploited until the 2015-2016 season by the Golden State Warriors. Their success over the past 3 seasons (3 trips to the NBA finals with 2 championships) shows how much the game of basketball has been changed.

Sometimes it’s necessary to unlearn long held beliefs (i.e. 2-point shooting in a predominately isolation offense game) in order to learn new, more powerful, game changing beliefs (i.e., 3-point shooting in a rapid ball movement offense).

Sticking with our NBA example, Phil Jackson is considered one of the greatest NBA coaches, with 11 NBA World Championships coaching the Chicago Bulls and the Los Angeles Lakers. Phil Jackson mastered the “Triangle Offense” that played to the strengths of the then dominant players Michael Jordan (Chicago Bulls) and Kobe Bryant (Los Angeles Lakers) to win those 11 titles.

However, the game passed Phil Jackson as the economics of the 3-point shot changed how to win. Jackson’s tried-and-true “Triangle Offense” failed with the New York Knicks leading to the team’s dramatic under-performance and ultimately his firing. It serves as a stark reminder of how important it is to be ready to unlearn old skills in order to move forward.

And what holds true for sports, holds even more so for technology and business.

The Challenge of Unlearning
For the first two decades of my career, I worked to perfect the art of data warehousing. I was fortunate to be at Metaphor Computers in the 1980’s where we refined the art of dimensional modeling and star schemas. I had many years working to perfect my star schema and dimensional modeling skills with data warehouse luminaries like Ralph Kimball, Margy Ross, Warren Thornthwaite, and Bob Becker. It became engrained in every customer conversation; I’d built a star schema and the conformed dimensions in my head as the client explained their data analysis requirements.

Then Yahoo happened to me and soon everything that I held as absolute truth was turned upside down. I was thrown into a brave new world of analytics based upon petabytes of semi-structured and unstructured data, hundreds of millions of customers with 70 to 80 dimensions and hundreds of metrics, and the need to make campaign decisions in fractions of a second. There was no way that my batch “slice and dice” business intelligence and highly structured data warehouse approach was going to work in this brave new world of real-time, predictive and prescriptive analytics.

I struggled to unlearn engrained data warehousing concepts in order to embrace this new real-time, predictive and prescriptive world. And this is one of the biggest challenge facing IT leaders today – how to unlearn what they’ve held as gospel and embrace what is new and different. And nowhere do I see that challenge more evident then when I’m discussing Data Science and the Data Lake.

Embracing The “Art of Failure” and The Data Science Process
Nowadays, Chief Information Officers (CIOs) are being asked to lead the digital transformation from a batch world that uses data and analytics to monitor the business to a real-time world that exploits internal and external, structured and unstructured data, to predict what is likely to happen and prescribe recommendations. To power this transition, CIO’s must embrace a new approach for deriving customer, product, and operational insights – the Data Science Process (see Figure 2).

Figure 2:  Data Science Engagement Process

The Data Science Process is about exploring, experimenting, and testing new data sources and analytic tools quickly, failing fast but learning faster. The Data Science process requires business leaders to get comfortable with “good enough” and failing enough times before one becomes comfortable with the analytic results. Predictions are not a perfect world with 100% accuracy. As Yogi Berra famously stated:

“It’s tough to make predictions, especially about the future.”

This highly iterative, fail-fast-but-learn-faster process is the heart of digital transformation – to uncover new customer, product, and operational insights that can optimize key business and operational processes, mitigate regulatory and compliance risks, uncover new revenue streams and create a more compelling, more prescriptive customer engagement. And the platform that is enabling digital transformation is the Data Lake.

The Power of the Data Lake
The data lake exploits the economics of big data; coupling commodity, low-cost servers and storage with open source tools and technologies, is 50x to 100x cheaper to store, manage and analyze data then using traditional, proprietary data warehousing technologies. However, it’s not just cost that makes the data lake a more compelling platform than the data warehouse. The data lake also provides a new way to power the business, based upon new data and analytics capabilities, agility, speed, and flexibility (see Table 1).

Data Warehouse Data Lake
Data structured in heavily-engineered structured dimensional schemas Data structured as-is (structured, semi-structured, and unstructured formats)
Heavily-engineered, pre-processed data ingestion Rapid as-is data ingestion
Generates retrospective reports from historical, operational data sources Generates predictions and prescriptions from a wide variety of internal and external data sources
100% accurate results of past events and performance “Good enough” predictions of future events and performance
Schema-on-load to support the historical reporting on what the business did Schema-on-query to support the rapid data exploration and hypothesis testing
Extremely difficult to ingest and explore new data sources (measured in weeks or months) Easy and fast to ingest and explore new data sources (measured in hours or days)
Monolithic design and implementation (water fall) Natively parallel scale out design and implementation (scrum)
Expensive and proprietary Cheap and open source
Widespread data proliferation (data warehouses and data marts) Single managed source of organizational data
Rigid; hard to change Agile; relatively ease to change

Table 1:  Data Warehouse versus Data Lake

The data lake supports the unique requirements of the data science team to:

  • Rapidly explore and vet new structured and unstructured data sources
  • Experiment with new analytics algorithms and techniques
  • Quantify cause and effect
  • Measure goodness of fit

The data science team needs to be able perform this cycle in hours or days, not weeks or months. The data warehouse cannot support these data science requirements. The data warehouse cannot rapidly exploration the internal and external structured and unstructured data sources. The data warehouse cannot leverage the growing field of deep learning/machine learning/artificial intelligence tools to quantify cause-and-effect. Thinking that the data lake is “cold storage for our data warehouse” – as one data warehouse expert told me – misses the bigger opportunity. That’s yesterday’s “triangle offense” thinking. The world has changed, and just like how the game of basketball is being changed by the “economics of the 3-point shot,” business models are being changed by the “economics of big data.”

But a data lake is more than just a technology stack. To truly exploit the economic potential of the organization’s data, the data lake must come with data management services covering data accuracy, quality, security, completeness and governance. See “Data Lake Plumbers: Operationalizing the Data Lake” for more details (see Figure 3).

Figure 3:  Components of a Data Lake

If the data lake is only going to be used another data repository, then go ahead and toss your data into your unmanageable gaggle of data warehouses and data marts.

BUT if you are looking to exploit the unique characteristics of data and analytics –assets that never deplete, never wear out and can be used across an infinite number of use cases at zero marginal cost – then the data lake is your “collaborative value creation” platform. The data lake becomes that platform that supports the capture, refinement, protection and re-use of your data and analytic assets across the organization.

But one must be ready to unlearn what they held as the gospel truth with respect to data and analytics; to be ready to throw away what they have mastered to embrace new concepts, technologies, and approaches. It’s challenging, but the economics of big data are too compelling to ignore. In the end, the transition will be enlightening and rewarding. I know, because I have made that journey.

The post “Unlearn” to Unleash Your Data Lake appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice. As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide. Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata. Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications. Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.