Welcome!

Microservices Expo Authors: Derek Weeks, Mehdi Daoudi, Pat Romanski, Elizabeth White, Liz McMillan

Related Topics: @BigDataExpo, Artificial Intelligence, @CloudExpo, @ThingsExpo

@BigDataExpo: Blog Feed Post

Demystifying #DataScience | @CloudExpo #BigData #AI #ArtificialIntelligence

Data science is about identifying those variables and metrics that might be better predictors of performance

[Opening Scene]: Billy Dean is pacing the office. He’s struggling to keep his delivery trucks at full capacity and on the road. Random breakdowns, unexpected employee absences, and unscheduled truck maintenance are impacting bookings, revenues and ultimately customer satisfaction. He keeps hearing from his business customers how they are leveraging data science to improve their business operations. Billy Dean starts to wonder if data science can help him. As he contemplates what data science can do for him, he slowly drifts off to sleep, and visions of Data Science starts dancing in his head…

[Poof! Suddenly Wizard Wei appears]: Hi, I’m your data science wizard to help alleviate your data science concerns. I don’t understand why folks try to make the data science discussion complicated. Let’s start simple with a simple definition of data science:

Data science is about identifying those variables and metrics that might be better predictors of performance

The key to a successful analytical model is having a robust set of variables against which to test for their predictive capabilities. And the key to having a robust set of variables from which to test is to get the business users engaged early in the process.

[A confused Billy Dean]: Okay, but I’m still confused. I mean, how does this really apply to my business?

[A patient Wizard Wei]: Well, let’s say that you are trying to predict which of your routes are likely to have under-capacity loads so that you can combine loads. In order to identify those variables that might be better predictors of under-capacity routes, you might ask your business users:

What data might you want to have in order to predict under-capacity routes?

The business users are likely to come up with a wide variety of variables, including:

Customer name Ship to location Customer industry
Building permits Customer tenure Change in customer size
Customer stock price Customer D&B rating Types of products hauled
Time of year Seasonality/Holidays Day of week
Traffic Weather Local Events
Distance from distribution center Open headcount on Indeed.com Tenure of logistics manager

The Data Science team will then gather these variables, perform some data transformations and enrichment, and then look for variables and combinations of variables that yield the best predictive results regarding under-capacity routes (see Figure 1).

Figure 1: Data Science Process

Role of Artificial Intelligence
[A less confuse Billy Dean]:
Ah, I think I understand, but what about all this talk about artificial intelligence? From some of these commercials on TV, it appears that robots with artificial intelligence will be ruling the world. Can you say Skynet?

[A still patient Wizard Wei]: Ah, that’s just marketing. Artificial intelligence is just one of many different tools in the predictive analytics kit bag of a data scientist. But artificial intelligence – while embracing some very sophisticated mathematical, data enrichment and computing techniques – is really pretty straightforward. All artificial intelligence is trying to do is to find and quantify relationships between variables buried in large data sets (see Figure 2).

Figure 2: Understanding Artificial Intelligence

[An inquisitive Billy Dean]: Okay, I’m starting to get it, but there seems to be some many
different analytic and predictive algorithms from which to choose. How does the business user know where to start?

[A growing frustrated Wizard Wei]: Ah, that’s the secret to the process. Business users don’t need to know which algorithms to use; they need to be able to identify those variables that might be better predictors of performance. It is up to the data science team to determine which variables are the most appropriate by testing the different algorithms.

Data Mining, Machine Learning and Artificial Intelligence (including areas such as cognitive computing, statistics, neural networks, text analytics, video analytics, etc.) are all members of the broader category of data science tools. Our data scientist team has experts in each of these areas, though no one data scientist is an expert at all of them (in spite of what they tell me). The different data science tools are used in different scenarios for different needs. Think of one of your mechanics. They have a large toolbox full of different tools. They determine what tools to use to fix a truck based upon the problem they are trying to solve. That’s exactly what a data scientist is doing, just with a different toolbox of algorithms.

No single algorithm is best over whole domain; so different algorithms are needed to cover different domains. Often combinations of algorithms are used in order to achieve the best results. To be honest, it’s like a giant jigsaw puzzle with the data science team constantly testing different combinations of metrics, data enrichment and algorithms until they find the combination that yields the best results.

[An enlightened Billy Dean]: I think I’ve finally got it. All of these different algorithms and techniques are just trying to help predict what is likely to happen so that I can make better operational and customer issues. But what’s the realm of what’s possible with data and analytics; I mean, how effective can my organization become at leveraging data and analytics to power my business?

[A proud Wizard Wei]: Great question, and the heart of the big data and data science conversation. Figure 3 shows how you could use these different data science tools to progress up the Big Data Business Model Maturity Index; to transition from running your business on Descriptive analytics that tell you what happened (Monitoring stage) to Predictive analytics that tell you what is likely to happen (Insights stage) to Prescriptive analytics that tell you what they should do (Optimization stage).

Figure 3: Leveraging Artificial Intelligence to drive Business Value

In the end, the data and the analytics are only useful if they help you optimize key operational processes, reduce compliance and security risks, uncover new revenue opportunities and create a more compelling, more prescriptive customer engagement. In the end, data and analytics are all about your business.

[A satisfied Billy Dean]: That’s great Wizard Wei! Thanks for your help!

Now, what can you do about my taxes…

To learn more about “Demystifying Data Science”, come to my Dell EMC World session: “Demystifying Data Science: A Pragmatic Guide To Building Big Data Use Cases” See you there!!

The post Demystifying Data Science appeared first on InFocus Blog | Dell EMC Services.

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business”, is responsible for setting the strategy and defining the Big Data service line offerings and capabilities for the EMC Global Services organization. As part of Bill’s CTO charter, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He’s written several white papers, avid blogger and is a frequent speaker on the use of Big Data and advanced analytics to power organization’s key business initiatives. He also teaches the “Big Data MBA” at the University of San Francisco School of Management.

Bill has nearly three decades of experience in data warehousing, BI and analytics. Bill authored EMC’s Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements, and co-authored with Ralph Kimball a series of articles on analytic applications. Bill has served on The Data Warehouse Institute’s faculty as the head of the analytic applications curriculum.

Previously, Bill was the Vice President of Advertiser Analytics at Yahoo and the Vice President of Analytic Applications at Business Objects.

@MicroservicesExpo Stories
We have Continuous Integration and we have Continuous Deployment, but what’s continuous across all of what we do is people. Even when tasks are automated, someone wrote the automation. So, Jayne Groll evangelizes about Continuous Everyone. Jayne is the CEO of the DevOps Institute and the author of Agile Service Management Guide. She talked about Continuous Everyone at the 2016 All Day DevOps conference. She describes it as "about people, culture, and collaboration mapped into your value streams....
In our first installment of this blog series, we went over the different types of applications migrated to the cloud and the benefits IT organizations hope to achieve by moving applications to the cloud. Unfortunately, IT can’t just press a button or even whip up a few lines of code to move applications to the cloud. Like any strategic move by IT, a cloud migration requires advanced planning.
Did you know that you can develop for mainframes in Java? Or that the testing and deployment can be automated across mobile to mainframe? In his session and demo at @DevOpsSummit at 21st Cloud Expo, Dana Boudreau, a Senior Director at CA Technologies, will discuss how increasingly teams are developing with agile methodologies, using modern development environments, and automating testing and deployments, mobile to mainframe.
“Why didn’t testing catch this” must become “How did this make it to testing?” Traditional quality teams are the crutch and excuse keeping organizations from making the necessary investment in people, process, and technology to accelerate test automation. Just like societies that did not build waterways because the labor to keep carrying the water was so cheap, we have created disincentives to automate. In her session at @DevOpsSummit at 20th Cloud Expo, Anne Hungate, President of Daring System...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory?
Most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes a lot of work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reduction in cost ...
Docker is on a roll. In the last few years, this container management service has become immensely popular in development, especially given the great fit with agile-based projects and continuous delivery. In this article, I want to take a brief look at how you can use Docker to accelerate and streamline the software development lifecycle (SDLC) process.
@DevOpsSummit at Cloud Expo taking place Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center, Santa Clara, CA, is co-located with the 21st International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is ...
Cloud adoption is often driven by a desire to increase efficiency, boost agility and save money. All too often, however, the reality involves unpredictable cost spikes and lack of oversight due to resource limitations. In his session at 20th Cloud Expo, Joe Kinsella, CTO and Founder of CloudHealth Technologies, tackled the question: “How do you build a fully optimized cloud?” He will examine: Why TCO is critical to achieving cloud success – and why attendees should be thinking holistically ab...
DevOps is good for organizations. According to the soon to be released State of DevOps Report high-performing IT organizations are 2X more likely to exceed profitability, market share, and productivity goals. But how do they do it? How do they use DevOps to drive value and differentiate their companies? We recently sat down with Nicole Forsgren, CEO and Chief Scientist at DORA (DevOps Research and Assessment) and lead investigator for the State of DevOps Report, to discuss the role of measure...
While some vendors scramble to create and sell you a fancy solution for monitoring your spanking new Amazon Lambdas, hear how you can do it on the cheap using just built-in Java APIs yourself. By exploiting a little-known fact that Lambdas aren’t exactly single-threaded, you can effectively identify hot spots in your serverless code. In his session at @DevOpsSummit at 21st Cloud Expo, Dave Martin, Product owner at CA Technologies, will give a live demonstration and code walkthrough, showing how ...
If you are part of the cloud development community, you certainly know about “serverless computing”, almost a misnomer. Because it implies there are no servers which is untrue. However the servers are hidden from the developers. This model eliminates operational complexity and increases developer productivity. We came from monolithic computing to client-server to services to microservices to serverless model. In other words, our systems have slowly “dissolved” from monolithic to function-by-func...
In his session at 20th Cloud Expo, Scott Davis, CTO of Embotics, discussed how automation can provide the dynamic management required to cost-effectively deliver microservices and container solutions at scale. He also discussed how flexible automation is the key to effectively bridging and seamlessly coordinating both IT and developer needs for component orchestration across disparate clouds – an increasingly important requirement at today’s multi-cloud enterprise.
IT organizations are moving to the cloud in hopes to approve efficiency, increase agility and save money. Migrating workloads might seem like a simple task, but what many businesses don’t realize is that application migration criteria differs across organizations, making it difficult for architects to arrive at an accurate TCO number. In his session at 21st Cloud Expo, Joe Kinsella, CTO of CloudHealth Technologies, will offer a systematic approach to understanding the TCO of a cloud application...
Many organizations are now looking to DevOps maturity models to gauge their DevOps adoption and compare their maturity to their peers. However, as enterprise organizations rush to adopt DevOps, moving past experimentation to embrace it at scale, they are in danger of falling into the trap that they have fallen into time and time again. Unfortunately, we've seen this movie before, and we know how it ends: badly.
API Security has finally entered our security zeitgeist. OWASP Top 10 2017 - RC1 recognized API Security as a first class citizen by adding it as number 10, or A-10 on its list of web application vulnerabilities. We believe this is just the start. The attack surface area offered by API is orders or magnitude larger than any other attack surface area. Consider the fact the APIs expose cloud services, internal databases, application and even legacy mainframes over the internet. What could go wrong...
With Cloud Foundry you can easily deploy and use apps utilizing websocket technology, but not everybody realizes that scaling them out is not that trivial. In his session at 21st Cloud Expo, Roman Swoszowski, CTO and VP, Cloud Foundry Services, at Grape Up, will show you an example of how to deal with this issue. He will demonstrate a cloud-native Spring Boot app running in Cloud Foundry and communicating with clients over websocket protocol that can be easily scaled horizontally and coordinate...
In his session at 20th Cloud Expo, Chris Carter, CEO of Approyo, discussed the basic set up and solution for an SAP solution in the cloud and what it means to the viability of your company. Chris Carter is CEO of Approyo. He works with business around the globe, to assist them in their journey to the usage of Big Data in the forms of Hadoop (Cloudera and Hortonwork's) and SAP HANA. At Approyo, we support firms who are looking for knowledge to grow through current business process, where even 1%...
The goal of Continuous Testing is to shift testing left to find defects earlier and release software faster. This can be achieved by integrating a set of open source functional and performance testing tools in the early stages of your software delivery lifecycle. There is one process that binds all application delivery stages together into one well-orchestrated machine: Continuous Testing. Continuous Testing is the conveyer belt between the Software Factory and production stages. Artifacts are m...
From manual human effort the world is slowly paving its way to a new space where most process are getting replaced with tools and systems to improve efficiency and bring down operational costs. Automation is the next big thing and low code platforms are fueling it in a significant way. The Automation era is here. We are in the fast pace of replacing manual human efforts with machines and processes. In the world of Information Technology too, we are linking disparate systems, softwares and tool...