Microservices Expo Authors: Elizabeth White, Mehdi Daoudi, Pat Romanski, Flint Brenton, Gordon Haff

Related Topics: Artificial Intelligence, Machine Learning , @CloudExpo

Artificial Intelligence: Article

AWS Broke the Internet Again or, Better, a Typo | @CloudExpo #AI #ML #DL

An AI-defined infrastructure can help to avoid service disruptions

Amazon Web Services (AWS) broke the Internet again or better "a typo". On February 28, 2017, an Amazon S3 service disruption in AWS' oldest region US-EAST-1 shuts down several major websites and services like Slack, Trello, Quora, Business Insider, Coursera and Time Inc. Other users were reporting that they were also unable to control devices which were connected via the Internet of Things since IFTTT was also down. Those kinds of disruptions are becoming more and more business critical for today's digital economy. To prevent these situations, cloud users should always consider the shared responsibility model in the public cloud. However, there are also ways where Artificial Intelligence (AI) can help. This article describes that an AI-defined Infrastructure respectively an AI-powered IT management system can help to avoid service disruptions of public cloud providers.

Amazon S3 Service Disruption - What has happened
After every service disruption AWS writes a summary of what was going on during an incident. This is what happened on the morning of February 28.

"The Amazon Simple Storage Service (S3) team was debugging an issue causing the S3 billing system to progress more slowly than expected. At 9:37AM PST, an authorized S3 team member using an established playbook executed a command which was intended to remove a small number of servers for one of the S3 subsystems that is used by the S3 billing process. Unfortunately, one of the inputs to the command was entered incorrectly and a larger set of servers was removed than intended. The servers that were inadvertently removed supported two other S3 subsystems.  One of these subsystems, the index subsystem, manages the metadata and location information of all S3 objects in the region. This subsystem is necessary to serve all GET, LIST, PUT, and DELETE requests. The second subsystem, the placement subsystem, manages allocation of new storage and requires the index subsystem to be functioning properly to correctly operate. The placement subsystem is used during PUT requests to allocate storage for new objects. Removing a significant portion of the capacity caused each of these systems to require a full restart. While these subsystems were being restarted, S3 was unable to service requests. Other AWS services in the US-EAST-1 Region that rely on S3 for storage, including the S3 console, Amazon Elastic Compute Cloud (EC2) new instance launches, Amazon Elastic Block Store (EBS) volumes (when data was needed from a S3 snapshot), and AWS Lambda were also impacted while the S3 APIs were unavailable."

Read more under "Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region".

Bottom line, a typo crashed the AWS powered Internet! AWS outages already have a long history and the more AWS customers running their web infrastructure on the cloud giant, the more issues end customers will experience in the future. According to SimilarTech only Amazon S3 is already used by 152,123 websites and 124,577 unique domains.

However, following the philosophy of "Everything fails all the time (Werner Vogels, CTO Amazon.com)" means if you are using AWS you must "Design for Failure".  Something cloud role model and video on demand provider Netflix is doing in perfection. In doing so, Netflix has developed its Simian Army an open source toolset everyone can use to run a cloud infrastructure on AWS high-available.

Netflix "simply" uses the two levels of redundancy AWS offers. Multiple regions and multiple availability zones (AZ). Multiple regions are the masterclass of using AWS, very complex and sophisticated since you must build and manage entire separated infrastructure environments within AWS' worldwide distributed cloud infrastructure. Multiple AZs are the preferred and "easiest" way for high availability (HA) on AWS. In this case, the infrastructure is built within more than one data center (AZ). In doing so, a single region HA architecture is deployed in at least two or more AZs - a load balancer in front of it is controlling the data traffic.

However, even if "typos" shouldn't happen the recent accident shows, that human error is still the biggest issue running IT systems. In addition, you can blame AWS only to a certain extend since the public cloud is about shared responsibility.

Shared Responsibility in the Public Cloud
An important public cloud detail is the self-service. Depending on its DNA the providers are only taking responsibility for specific areas. The customer is responsible for the rest. In the public cloud, it is about sharing responsibilities - this model is called Shared Responsibility. The provider and its customers divide the field of duties among themselves. In doing so, the customer's self-responsibility plays a major role. In the context of IaaS utilization, the provider is responsible for the operations and security of the physical environment. He is taking care of:

  • Set up and maintenance of the entire data center infrastructure.
  • Deployment of compute power, storage, network and managed services (like databases) and other micro services.
  • Provisioning the virtualization layer customers are using to demand virtual resources at any time.
  • Deployment of services and tools customers can use to manage their areas of responsibility.

The customer is responsible for the operations and security of the logical environment. This includes:

  • Set up of the virtual infrastructure.
  • Installation of operating systems.
  • Configuration of networks and firewall settings.
  • Operations of own applications and self-developed (micro) services.

Thus, the customer is responsible for the operations and security of his own infrastructure environment and the systems, applications, services, as well as stored data on top of it. However, providers like Amazon Web Services or Microsoft Azure provide comprehensive tools and services customers can use e.g. to encrypt their data as well as ensure identity and access controls. In addition, enablement services (micro services) exist that customers can adopt to develop own applications more quickly and easily.

In doing so, the customer is all alone in its area of responsibility and thus must take self-responsibility. However, this part of the shared responsibility can be done by an AI-defined IT management system respectively an AI-defined Infrastructure.

An AI-defined Infrastructure can help to avoid Service Disruptions
An AI-defined Infrastructure can help to avoid service disruptions in the public cloud. However, the basis of this kind of infrastructure is a General AI that combines three major human abilities that enable enterprises to tackle IT and business process challenges.

  • Understanding: By creating a semantic data map the General AI understands the world of the company in which its IT and business exists.
  • Learning: By creating Knowledge Items the General AI learns best practices and reasoning from experts. Knowledge is taught in atomic pieces of information (Knowledge Items) that represent separate steps of a process.
  • Solving: With machine reasoning problems are solved in ambiguous and changing environments. The General AI dynamically reacts to the ever-changing context, selecting the best course of action. Based on machine learning the results are optimized through experiments.

To put this into the context of an AWS service disruption:

  • Understanding: The General AI creates a semantic map of the AWS environment as part of the world in which the company exists.
  • Learning: IT experts create Knowledge Items while they are configuring and working with AWS from what the General AI learns best practices. Thus, the experts teach the General AI contextual knowledge that includes what, when, where and why something needs to be done - for example when a specific AWS service is not responding.
  • Solving: The General AI dynamically reacts to incidents based on the learned knowledge. Thus, the AI (probably) knows what to do at this very moment - even if no high availability setup was considered from the beginning.

Frankly speaking, everything described above is no magic. Like every new born organism an AI-defined Infrastructure needs to be trained but afterwards can work autonomously as well as can detect anomalies as well as service disruptions in the public cloud and solve them. Therefore, you need the knowledge of experts who have a deep understanding of AWS and how the cloud works in general. These experts need to teach the General AI with their contextual knowledge that includes not only what, when and where but also why. They have to teach the AI with atomic pieces (Knowledge Items, KI) that can be indexed and prioritized by the AI. Context and indexing enable this KIs to be combined to form many solutions.

KIs created by various IT experts create pooled expertise that is further optimized by machine selection of best knowledge combinations for problem resolution. This type of collaborative learning improves process time task by task. However, the number of possible permutations grows exponentially with added knowledge. Connected to a knowledge core, the General AI continuously optimizes performance by eliminating unnecessary steps and even changing routes based on other contextual learning. And the bigger the semantic graph and knowledge core gets, the better and more dynamically the infrastructure can act in terms of service disruptions.

On a final note, do not underestimate the "power of we"! Our research at Arago revealed that with an overlap of 33 percent in basic knowledge, this knowledge can and is used outside a specific organizational environment, i.e. across different client environments. The reuse of knowledge within a client is up to 80 percent. Thus, exchanging basic knowledge within a community becomes imperative from an efficiency perspective and improve the abilities of the General AI.

More Stories By Rene Buest

Rene Buest is Director of Market Research & Technology Evangelism at Arago. Prior to that he was Senior Analyst and Cloud Practice Lead at Crisp Research, Principal Analyst at New Age Disruption and member of the worldwide Gigaom Research Analyst Network. At this time he was considered a top cloud computing analyst in Germany and one of the worldwide top analysts in this area. In addition, he was one of the world’s top cloud computing influencers and belongs to the top 100 cloud computing experts on Twitter and Google+. Since the mid-90s he is focused on the strategic use of information technology in businesses and the IT impact on our society as well as disruptive technologies.

Rene Buest is the author of numerous professional technology articles. He regularly writes for well-known IT publications like Computerwoche, CIO Magazin, LANline as well as Silicon.de and is cited in German and international media – including New York Times, Forbes Magazin, Handelsblatt, Frankfurter Allgemeine Zeitung, Wirtschaftswoche, Computerwoche, CIO, Manager Magazin and Harvard Business Manager. Furthermore he is speaker and participant of experts rounds. He is founder of CloudUser.de and writes about cloud computing, IT infrastructure, technologies, management and strategies. He holds a diploma in computer engineering from the Hochschule Bremen (Dipl.-Informatiker (FH)) as well as a M.Sc. in IT-Management and Information Systems from the FHDW Paderborn.

@MicroservicesExpo Stories
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
"We started a Master of Science in business analytics - that's the hot topic. We serve the business community around San Francisco so we educate the working professionals and this is where they all want to be," explained Judy Lee, Associate Professor and Department Chair at Golden Gate University, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
The general concepts of DevOps have played a central role advancing the modern software delivery industry. With the library of DevOps best practices, tips and guides expanding quickly, it can be difficult to track down the best and most accurate resources and information. In order to help the software development community, and to further our own learning, we reached out to leading industry analysts and asked them about an increasingly popular tenet of a DevOps transformation: collaboration.
We call it DevOps but much of the time there’s a lot more discussion about the needs and concerns of developers than there is about other groups. There’s a focus on improved and less isolated developer workflows. There are many discussions around collaboration, continuous integration and delivery, issue tracking, source code control, code review, IDEs, and xPaaS – and all the tools that enable those things. Changes in developer practices may come up – such as developers taking ownership of code ...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"We are an integrator of carrier ethernet and bandwidth to get people to connect to the cloud, to the SaaS providers, and the IaaS providers all on ethernet," explained Paul Mako, CEO & CTO of Massive Networks, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
With continuous delivery (CD) almost always in the spotlight, continuous integration (CI) is often left out in the cold. Indeed, it's been in use for so long and so widely, we often take the model for granted. So what is CI and how can you make the most of it? This blog is intended to answer those questions. Before we step into examining CI, we need to look back. Software developers often work in small teams and modularity, and need to integrate their changes with the rest of the project code b...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...