Welcome!

Microservices Expo Authors: Zakia Bouachraoui, Elizabeth White, Pat Romanski, Liz McMillan, Yeshim Deniz

Related Topics: @DevOpsSummit, Microservices Expo, @CloudExpo

@DevOpsSummit: Blog Feed Post

The Two Faces of #Microservices | @CloudExpo @JPMorgenthal #AI #DevOps

Microservices (μServices) are a fascinating evolution of the Distributed Object Computing (DOC) paradigm

Microservices (μServices) are a fascinating evolution of the Distributed Object Computing (DOC) paradigm. Initial design of DOC attempted to solve the problem of simplifying developing complex distributed applications by applying object-oriented design principles to disparate components operating across networked infrastructure. In this model, DOC “hid” the complexity of making this work from the developer regardless of the deployment architecture through the use of complex frameworks, such as Common Object Request Broker Architecture (CORBA) and Distributed Component Object Model (DCOM).

Eventually, these approaches waned in popularity as the distribution frameworks were clumsy and the separation of responsibilities between developer and operations did not meet with the promised goals. That is, developers still needed to understand too much about how the entire application behaved in a distributed mode to troubleshoot application problems and the implementation was too developer-centric to allow operations to be able to fulfill this role.

One aspect of this early architecture that did succeed, however, was the concept of the Remote Procedure Call (RPC). The RPC represented a way to call functionality inside of another applications across a network using the programming language function call constructs such as passing parameters and receiving a result. With the emergence of declarative syntaxes, such as XML, and then JSON, marshalling—the packaging of the data to and from the RPC—became simpler and the need for specialized brokers were replaced with generic transports, such as HTTP and asynchronous messaging. This gave rise to the era of Web Services and Service Oriented Architecture (SOA).

To make a long story short, Web Services were extremely popular, SOA, required too much investment in software infrastructure to be realized on a massive scale. Web Services was eventually rebranded Application Programming Interface (API)—there is really no difference architecturally between a Web Service and an API—and JSON became the primary marshalling scheme for Web-based APIs.

Apologies for the long-winded history lesson, but it is important to understand μServices in context. As you can see from this history the more we moved away from the principles of object-oriented toward a more straightforward client/server paradigm there was a rise in adoption. The primary reason for this is that architecture takes time, satisfies needs of longer-term goals, and requires skilled individuals that can often be expensive. With the growing need for immediacy driven by the expanding digital universe, these are characteristics that many business leaders believed were luxuries where speed was essential.

Needless to say, there was an immediate benefit of rapid growth of new business capabilities and insight into petabytes of data that was previously untouchable. Version 1.0 was a smashing success. Then came the need for 2.0. Uh-oh! In the race to get something fast, what was ignored was sustainability of the software. Inherent technical debt fast became the inhibitor to deriving 2.0 enhancements at the same speed as 1.0 was developed. For example, instead of envisioning that three applications all implemented similar logic and developing that once as a configurable component, it was developed three times each specific to a single application.

Having realized the value of architecture and object-oriented design that was dropped in favor of speed, the vacuum created was for a way to use the speedy implementation mechanics while still being able to take advantage of object-oriented design paradigm. The answer is μServices.

While Martin Fowler and others have done a great job explaining the “what” and “how” of μServices, for me the big realization was in the “why” (described herein). Without the “why” it’s too easy to get entangled in the differentiation between this and the aforementioned Web Services. For me, the “why” provided ample guidelines for describing the difference between a μServices, an API and a SOA service.

For simplicity I’ll review the tenets of OO here and describe their applicability to μServices:

  • Information hiding – the internal representation of data is not exposed externally, only through behaviors on the object
  • Polymorphic – a consumer can treat a subtype of an object identically to the parent. In this particular case, μServices that implements a particular interface can be consumed in the identical fashion
  • Inheritance – the ability for one object to inherit from another and override one or more behaviors. In the case of μServices, we can create a new service that delegates some or all behavior to another service.

The interesting thing about these tenets as a basis for μServices, and subsequently the basis for the title of this article, is that answering the mail on this does not necessitate complete redevelopment. Indeed, in many cases, existing functionality can be refactored from the 1.0 software and packaged up using container technology delivering the exact same benefit as having developed the 2.0 version from scratch as a μService.

Let’s revisit our earlier dilemma that similar logic was developed three different times into three different applications. For purposes of this blog, let’s assume that is a tax calculation and was written once each for US, Canada and Europe. Each of these has a table implemented in a database. It would not take much work to take these different implementations, put them into a single  μService with a single REST interface using a GET operation with the region and providing the necessary inputs on the query string. That new μService could then be packaged up inside a Docker container with its own Nginx (Web Server) and MySQL database with required tax tables for each region. In fact this entire process could probably be accomplished, tested and deployed in the span of a week. Now, we can create four new applications that all leverage the same tax calculation logic without writing it four more times.

This works great as long as the tax tables don’t change or we don’t want to add a new region. In that case, additional development would be required and the container would need to be re-created, tested and re-deployed.

Alternatively, we could develop a reusable tax service and deploy this new μService in a Platform-as-a-Service (PaaS). Assumedly, we could extend this service with new regions and changes to tax tables without impacting any other region, having to regression test the entire tax service, or take the μService out of service during the redeployment period. Moreover, the new region would be available simply by modifying the routing rules for the REST URL to accept the new region.

The diagram below illustrates these two different options. The .WAR file represents the deployable tax calculator. As you can see one or more containers would need to be either patched or re-created to deploy new functionality in the Deployment Architecture model, whereas we could continue to deploy multiple .WAR files in the PaaS Architecture, which would handle routing off the same URL-based interface giving appearance of being a single application.

Thus, the two faces of μServices are those create through deployment and those created through design and development. As a lifelong software architect, I recognize the pragmatism in getting to market faster using the deployment architecture, but highly-recommend redesign and development for greater sustainability and longevity.

If you found this article useful, please leave a comment.

More Stories By JP Morgenthal

JP Morgenthal is a veteran IT solutions executive and Distinguished Engineer with CSC. He has been delivering IT services to business leaders for the past 30 years and is a recognized thought-leader in applying emerging technology for business growth and innovation. JP's strengths center around transformation and modernization leveraging next generation platforms and technologies. He has held technical executive roles in multiple businesses including: CTO, Chief Architect and Founder/CEO. Areas of expertise for JP include strategy, architecture, application development, infrastructure and operations, cloud computing, DevOps, and integration. JP is a published author with four trade publications with his most recent being “Cloud Computing: Assessing the Risks”. JP holds both a Masters and Bachelors of Science in Computer Science from Hofstra University.

Microservices Articles
When building large, cloud-based applications that operate at a high scale, it’s important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. “Fly two mistakes high” is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee A...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Lori MacVittie is a subject matter expert on emerging technology responsible for outbound evangelism across F5's entire product suite. MacVittie has extensive development and technical architecture experience in both high-tech and enterprise organizations, in addition to network and systems administration expertise. Prior to joining F5, MacVittie was an award-winning technology editor at Network Computing Magazine where she evaluated and tested application-focused technologies including app secu...
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure ...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addresse...
The now mainstream platform changes stemming from the first Internet boom brought many changes but didn’t really change the basic relationship between servers and the applications running on them. In fact, that was sort of the point. In his session at 18th Cloud Expo, Gordon Haff, senior cloud strategy marketing and evangelism manager at Red Hat, will discuss how today’s workloads require a new model and a new platform for development and execution. The platform must handle a wide range of rec...
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true ...
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...