Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Microservices Expo

Microservices Expo: Article

Web Services Infrastructure

Web Services Infrastructure

It's a fact: Web services have started to mature. Those emergent standards that once held so much promise are now actually starting to deliver useful implementations. With the basic Web services plumbing mastered, we're starting to see more advanced infrastructure, which enables these second-generation Web services to focus on complex interactions over the Internet. This article, the first of a two-part series, covers one such aspect of the second-generation infrastructure for Web services: transactions.

Overview
The OASIS Business Transactions Protocol, or BTP, has become the prominent standard for Web services transactions. BTP is the product of just over a year's work by vendors such as HP, BEA, and Oracle, and has resulted in the development of a transaction model particularly suited to loosely coupled systems like Web services.

In this article, we're going to look at how BTP fits into the whole Web services architecture, and how we can use one of the vendor toolkits (we'll use HP's toolkit, but the underlying principles apply to other vendors' software) to build and consume transaction-aware Web services. But before we do, let's review the architecture in the context of a simple transactional scenario.

The diagram shown in Figure 1 is similar to a typical high-level Web services architecture. The only differences here are that one service, the transaction manager, has been singled out as being distinct from the other Web services (which we assume are responsible for some aspects of a business process), and the fact that we've chosen to identify two distinct categories of messages: control messages (which are used to control transactions) and application messages (which propagate application data around the system).

 

Of course, if it really were as simple as deploying a transaction manager service into the architecture, then this article wouldn't be necessary. Unfortunately it's not that simple; or at least not quite that simple, as we shall see. To illustrate, it's convenient to use Figure 1 as a point of reference as we work through the architecture, filling in the details. We'll work from left to right, from the client through to the Web services, and cover everything in between.

Consuming Transactional Web Services
Though Web services is a hot technology, we shouldn't lose sight of the fact that it exists to support business processes. With that in mind, the right place to start our investigation is most definitely at the client end of a system - where the results of Web services interactions are brought together and where the value of a business process is ultimately focused. To place this in the proper context, it's useful to see an exploded view of the client-side infrastructure, shown in Figure 2.

 

In a nontransactional Web services- based application, the client process can be something as simple as a collection of calls (via proxies) to services that are involved in the activity. In a transactional Web services-based application, the same is (surprisingly enough) true, with the caveat that the developer must demarcate any transactions that support business logic, as well as deal with application-specific calls. In this case the transaction demarcation is supported by the client transaction API (the Client Tx API in Figure 2), whereas the business methods supported by service proxies appear to logically remain free of any transactional infrastructure from the point of view of the client application developer. In fact, under the covers there is a mechanism that performs context associations with local threads of control within the client and messages passed between the client and (transactional) Web services. In Figure 2, this is the purpose of the Tx Context Interceptor.

Client API
The client API provides the developer with the necessary tools with which to structure and control transactions within the application. The commands available to a developer in a transactional Web services environment are quite familiar to those of us that have used other transaction APIs in the past, with the caveat that BTP supports full control over both phases of the commit process and thus has a larger command set than we might otherwise envision. The UserTransaction API supports the common verbs (and by implication the methods that enact those verbs) for transaction demarcation:

  • Begin: Creates a new top-level transaction (or subtransaction) for either atomic or cohesive transactions
  • Prepare: Instructs an atomic transaction to prepare its associated participating services when the transaction is to terminate
  • Prepare Inferiors: Instructs a cohesive transaction to prepare one or more of its participating services at transaction termination time
  • Confirm: Instructs an atomic transaction to confirm all of its participating services, and confirms all participant services that voted to confirm in the case of a cohesive transaction
  • Cancel: Instructs all participating services in an atomic transaction, or those services specified in the parameter to the method call in a cohesive transaction, to cancel In addition to these demarcation verbs, a number of other commands can be used to inquire about a transaction:
  • Status: Asks the transaction manager to return the state (e.g., committed, preparing) of the current transaction
  • Transaction type: Exposes the type of the current transaction (i.e., atom or cohesion)
  • Transaction name: Exposes the name of the current transaction in string form

    Two verbs allow advanced manual transaction management:

  • Suspend: Disassociates the current thread from the current transaction
  • Resume: (Re)associates the current thread with the current transaction

    Those who have previously worked with transactions will immediately find themselves at home with this API, since it is in the same spirit as other transaction APIs like JTA. Let's take a look at an example.

    In the code shown in Listing 1, we see an atom being used to ensure a consistent outcome across calls to the Web services shown in Figure 1. Initially we obtain a reference to an instance of UserTransaction from a (previously initialized) UserTransactionFactory, which we then use to delimit the scope of the single transaction in our application. Our atomic transaction is started by calling the begin(...) method on the user transaction API and specifying the type of transaction as an atom. From now on the business logic is straightforward and contains no further transaction control primitives; we simply go ahead and make the bookings we want for our night out through the book(...) methods of the service proxies we created.

    Once the business logic has completed, we can terminate the transaction by calling prepare(...) and confirm(...) which, in the absence of failures, should confirm to all parties that they should henceforth honor all our booking requests. If there are failures, then all parties are informed and should take the necessary steps to undo any work undertaken on our behalf, while the client application will receive an exception that details what exactly has gone wrong.

    The great thing about this example is that it shows just how simple and relatively noninvasive it can be to wrap work with Web services within a transaction. In fact, the business logic aspects of the code would be the same irrespective of whether or not transactions are used.

    Under the Covers:
    BTP's Two-Pipe Model

    To support transactional Web services-based applications, BTP utilizes two distinct types of messages that the client application exchanges with business Web services. The first of these messages is exchanged exclusively within the transaction infrastructure. The other type consists of messages that the client exchanges with business Web services onto which BTP messages might be piggybacked.

    The messages that the application exchanges with the transaction infrastructure are encapsulated by the primitives supported by the client API. For example, a begin(...) method being executed by the client causes a corresponding BTP begin message to be sent to a transaction manager via the SOAP server, and for response messages from the transaction manager to be processed in the reverse order. This is shown in Figure 3, and a sample BTP message (begin) is shown in Listing 2. The only slightly unusual aspect to this example is that the response to begin messages (and only begin messages) is cached for later use so local threads of execution can be associated with the BTP transaction under which its work is being carried out.

     

    When transporting application messages, the situation is a little different. Unlike BTP messages in which the message content travels in the body of the SOAP envelope, when application messages are sent, application-specific content travels in the body, while any BTP messages are relegated to the header part of the envelope. We can see this in Listing 3, in which the SOAP body carries the application payload, while the header is used to carry the BTP context.

    This scheme works well since most SOAP stacks are well equipped to perform efficient header processing, and placing the BTP content, including the transaction context, in the header means that SOAP actors can pick out the parts of the header space that are of interest without having to parse the whole application payload. From a development point of view, most SOAP servers support pluggable header processors, which means that building BTP context processing into your infrastructure should be straightforward. To demonstrate that point, let's take a look at the general client-side architecture (which is based on Apache Axis in the toolkit we've used), as per the examples in Figure 3 and Listing 2.

    Figure 4 shows the outward path of a call to a Web service, starting from the left with the local method call to a service proxy. The call then follows the logical path of being converted to the appropriate SOAP body, which contains the application payload, before it progresses to the outgoing context handler. The context handler takes advantage of the fact that the information supplied in response to the BTP begin message was recorded, and is able to produce a BTP context from that data, which it duly inserts into the SOAP envelope's header. If there is no contextual data stored for the current thread (i.e., it isn't part of a transaction or the transaction has been deliberately suspended), then the context insertion is simply bypassed.

     

    For return messages, the strategy is simply the reverse, as shown in Figure 5, in which the flow is from right to left. Responses are quickly scanned to see if they contain any BTP context entries in their headers. If context data is present, it is stripped out of the message and may be used to resume the transaction locally by associating the current thread while the rest of the message passes through to the service proxies. Once at the service proxies, the local method call returns control to the client, which is unaware of all of the additional processing that has occurred on its behalf.

     

    Having reached the point where we can send application messages with BTP contexts, as well as BTP messages themselves, we're able to follow the messages as they travel across the wire. Following the cables inevitably leads us to business Web services.

    Summary
    The first article in this series on implementing transactional Web services- based applications has shown how client applications can be constructed using off-the-shelf BTP toolkits. We've seen how much of the hard work involved in managing transactions has been delegated to the toolkit and the underlying SOAP infrastructure, leaving to the developer the real value-add work of getting the application logic and transaction structure right. However, this is only half the story. In the next article, we'll investigate what happens at the Web service end, and show how true enterprise-class Web services applications can be made transactional from end to end.

  • More Stories By Jim Webber

    Dr. Jim Webber is a senior researcher from the University of Newcastle
    upon Tyne, currently working in the convergence of Web Services and Grid
    technologies at the University of Sydney, Australia. Jim was previously
    Web Services architect with Arjuna Technologies where he worked on Web
    Services transactioning technology, including being one of the original
    authors of the WS-CAF specification. Prior to Arjuna, Jim was the lead
    developer with Hewlett-Packard on the industry's first Web Services
    Transaction solution. Co-author of "Developing Enterprise Web Services -
    An Architect's Guide," Jim is an active speaker and author in the Web
    Services space. Jim's home on the web is http://jim.webber.name

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    @MicroservicesExpo Stories
    How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
    For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
    If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
    In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
    DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
    DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
    While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
    The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
    The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
    The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
    The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
    Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
    Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
    "Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
    The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
    We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
    Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
    It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
    Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
    "Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.