Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Microservices Expo

Microservices Expo: Article

Wireless Web Serviceswith J2MERemote Possibilities

Wireless Web Serviceswith J2MERemote Possibilities

What happens when the hype of Web services meets the increasingly popular and ever-changing world of wireless computing? Most likely, confusion and disillusionment. In this two-part article, we'll explore the uncharted waters of wireless Web services. We'll use the J2ME platform for developing our Web service clients and access remote services on the Internet using standardized industry protocols. In this first article, we'll examine XML-RPC, a simple, lightweight mechanism for invoking remote services with XML. The second article will compare and contrast XML-RPC with SOAP, a more robust, sophisticated, and heavier solution for invoking remote services with XML.

The Wireless World
A Web service is a coarse-grained interface to one or more business services that is invocable across a network. With a wireless network, this invocation process becomes more complicated. Many cellular telephone service providers use analog circuit-switched networks that open a constant connection for the duration of the exchange. More advanced providers are moving to digital packet-switched networks. In packet switching, a stream of digital bits is carved up into bit clusters, called packets, and blasted across the network individually.

Circuit-switched analog networks are more expensive to maintain and offer limited bandwidth. Digital packet-switched networks are cheaper, more efficient, and do not have the same bandwidth limitations. The trade-off with packet-switched networks is that packets are occasionally lost ("dropped") during transmission. Dropped packets must be retransmitted. The larger a transmission is, the greater the likelihood that packets will be dropped, requiring retransmission and degrading performance.

The bottom line is that regardless of the type of network being used by a provider, wireless clients must keep their exchanges as thin as possible to ensure optimum performance. Additionally, mobile devices typically do not have an abundance of resources for processing fat requests or responses, or storing robust data models.

XML-RPC for Wireless Web Services
XML-RPC is a Remote Procedure Calling protocol that invokes remote procedures over a network by sending XML-formatted messages. The XML-RPC specification was developed and is maintained by UserLand Software, Inc.; the full specification can be found at www.xmlrpc.org/spec.

XML-RPC is an extremely lightweight mechanism that can be used as part of a Web services architecture. The key to a Web services architecture is the utilization of XML as a language-agnostic, vendor- and platform-neutral medium for accessing Internet or intranet services. XML-RPC provides the minimum functionality necessary to specify data types, pass parameters, and invoke remote procedures in a neutral way.

What makes XML-RPC so efficient? XML-RPC defines eight data types: six primitive types (int, Boolean, string, double, datetime, and base64) and two complex types (struct and array). These are the only types available, yet they provide all the functionality that is needed about 80% of the time. Although SOAP provides a more robust data-typing mechanism based upon XML Schemas (even allowing the creation of custom data types), this is often overkill in a wireless environment. We'll explore these topics further in our next article; for now, we simply need to understand that XML-RPC is an extremely lightweight mechanism for invoking Web services in a standardized and neutral manner.

The wireless applications that we'll be developing in these articles require the J2ME platform, so we'll take a brief look at J2ME to provide for a basic background for these wireless Web services.

J2ME Primer
The Java 2 Micro Edition is a Java 2 platform for developing applications for devices with limited memory. Specifically, J2ME addresses the need for application development for consumer and embedded devices. Because it is designed for devices with extremely small footprints, many of the features of the J2SE are not included. Some of the notable features not included are floating point data types, serialization (no JavaBeans), thread groups and thread daemons, finalizations, user-defined class loaders, and the JNI. As Figure 1 indicates, the J2ME platform is a layered stack consisting of a virtual machine and the core J2ME class libraries, as well as configuration class libraries and device-specific profiles.

Configurations
Configurations define the run-time environment by specifying the Java features (classes) that are available as well as which virtual machine will be used. A configuration can also be thought of as relating to a category of devices that have common characteristics and memory constraints. For devices that have a total memory from 160 to 512 kB, the Connected Limited Device Configuration (CLDC) for J2ME can be used. CLDC devices usually include cell phones, two-way pagers and low-end PDAs. The CLDC also targets devices with a network connection and processing power of 16 or 32 bits. The CLDC uses the K (k for kilobyte) Virtual Machine or KVM. For devices that have a total memory of 2MB or greater and a 32-bit or 64-bit microprocessor, the Connected Device Configuration (CDC) is used. The CDC uses the CVM and is generally used on set-top TVs, higher-end PDAs, and next generation mobile devices. A configuration (and corresponding virtual machine), combined with a device-specific profile, and the core J2ME libraries, constitutes a complete J2ME environment.

Profiles Overview
Profiles work on top of configurations and focus on a "vertical" market or industry segment of devices. Profiles also allow developers to address more device-specific features such as the life cycle of an application, user interfaces, and networking issues. CDC devices typically use the Foundation profile, which targets devices that require more networking capabilities and no GUIs. CLDC devices typically use the Mobile Information Device Profile (MIDP). For the wireless development that we focus on in this series, we'll be using MIDP.

MIDP
The MIDP consists of APIs for user interface design as well as for database activity. A MIDP application is referred to as a midlet. MIDP even allows multiple midlets to be packaged together as a midlet suite and share information between midlets within the suite. This is generally only useful, however, in the case of midlets that maintain a database. For our purposes, we're interested in MIDP's GUI capabilities. MIDP supports 10 GUI components: Command, Alert, Choice, Choice Group, Form, List, StringItem, TextBox, TextField, and Ticker.

In our sample application, we'll be using the following GUI components:

  • List: Contains a list of choices, typically relies upon a device's "select" or "go" functionality.
  • Command: Presents a choice of action. Contains a label, a type, and a priority.
  • Display: The midlet's canvas upon which UI components are displayed.
  • Alert: Informs the user about an exceptional condition or error. It can also be used to display the results of a query to the user.
To understand how a MIDP user interface is created and how it functions, it's necessary to understand the life cycle of a midlet. This can be seen in four stages, each with a corresponding method defined within the midlet:
  • Initialization: constructor: Every midlet has a default constructor. This is used to initialize a midlet's data members, including GUI components, with their desired property values (size, shape, color, label, text, reference, etc.).
  • Activation: startApp(): Acquires necessary resources, makes display visible to user, and begins to perform requested services.
  • Passivation: pauseApp(): Stops performing services and releases shared resources.
  • Destruction: destroyApp(): Releases shared and local resources and saves any persistent data.
The mobile device will handle the management of a midlet through these life cycle methods via Application Management Software (AMS). AMS frees the developer from directly managing a midlet and its resources.

Writing a MIDP Web Service Client
In this article, we'll create a MIDP client that uses the XML-RPC protocol for invoking remote Web services in a platform- and language-neutral way. To do this, we'll need a J2ME implementation of the XML-RPC protocol. At the time of this writing, the only publicly available client implementation is kXML-RPC, an open-source XML-RPC project for the J2ME platform. kXML-RPC is maintained by the Enhydra organization and can be freely downloaded from their Web site at http://kxmlrpc.enhydra.org. The kXML-RPC library uses Enhydra's kXML parser to handle the low-level XML parsing details. With the addition of the parser, the kxmlrpc jar file reaches a whopping 24kb!

With the kxmlrpc jar file downloaded to your system and placed in your application classpath, you can write the MIDP client. We'll walk through the creation of the midlet and highlight the most interesting lines of code, but the entire source code for the midlet can be seen in Listing 1, and the source for MyMidl et.java can be downloaded from the kXML-RPC Web site (kxmlrpc-samples.zip) located at http://kxmlrpc.enhydra.org/software/downloads/index.html.

The first step, obviously, is to import the necessary packages and declare the MIDP components that will be used in the application. After this, we define the midlet's constructor, initializing all the UI components and adding them to the display as necessary. With that complete, we need to fill in the three other life cycle methods. In the startApp() method, we simply bring the MIDP display into action. Since we don't use any shared resources, the pauseApp() method is blank. Finally, the destroyApp() method releases the local resources that we have allocated for our midlet.

Now we're ready for the interesting part of the code, the commandAction() method. This method is called anytime the user performs a command event (pressing a key, selecting an item from a list, etc.). The Command and Displayable objects are then queried to determine which component has actually been activated/deactivated, and the appropriate actions are performed. Our midlet has three remote XML-RPC Web services displayed in a list (see Figure 2), and a switch statement is performed on the index of that list to determine which item has been selected. In Listing 1, only the first service is given an implementation, but the other two can be seen by downloading the source code.

The Timestamp service is very simple, a parameterless request is sent to the service and a String object representing the current time is returned. To perform this query, a kxmlrpc object is created with the specified URL for the Web service. Then an empty Vector is created and the actual request is performed with the following line:

String serverTime = ( String )
xmlrpc.execute(
"sysTime.getSystemTime", params );

The execute() method accepts two parameters, a String representing the name of the service, and a Vector representing any parameters that should be passed to the service. This particular service returns a String object that is then sent to the screen to display the current time on the server. An example can be seen in Figure 3.

Deploying and Testing a Midlet
For deploying and testing our midlet, we used Sun's J2ME Wireless Toolkit (J2MEWTK) version 1.0.3 beta which can be downloaded from Sun's Web site at http://java.sun.com/products/j2mewtoolkit/. The toolkit is 100% Java, built using the Java 2 Standard Edition, so even though it contains the J2ME APIs and is used for deploying and testing J2ME applications, it requires a J2SE implementation in order to run.

To deploy and test your midlet, you need to do four things: create a project for your application, write the midlet's code, place all of the files and resources in their appropriate application directories, and then build and run the application.

With the toolkit properly installed, the first step is to create a project for your application. To do so, follow these steps:

  • Start the KToolbar application
  • Click the "New Project" button. Name your project and name your project's midlet (this will also be the name used for the midlet in the .java source file).
  • Click the "OK" button on the Settings screen that shows keys and values. This screen represents your application's deployment properties. You can specify these properties now or later by clicking the "Settings" button.
Now that you've created a project, the toolkit has created a corresponding directory structure for your project. That project directory structure is located under the apps directory of the J2MEWTK installation directory. We're only interested in three of them: the source code, resource, and library directories.
  • \src: Place your java midlet's source code files in this directory.
  • \res: Place any resource files (images, text files, etc.) in this directory.
  • \lib: Place JAR files and Java class files that your midlet(s) will need in this directory.
After creating a project, writing the midlet code, and placing all the necessary files in the appropriate directories, you're ready to actually test the application. This requires three essential steps:
  • Build the application into an executable midlet by clicking the "Build" button.
  • Resolve any errors or exceptions that are thrown and rebuild the application until a successful build is accomplished.
  • Execute the application by clicking the "Run" button after a successful build has been created.
When you run a midlet from the J2MEWTK, a phone emulator is started and the toolkit attempts to load your midlet into the emulator. You can test your midlet with any of the supplied emulators, or even download additional emulation environments from the Web. With your midlet running, you can navigate through your midlet just as you would on a real J2ME-enabled wireless phone. If your computer is currently connected to the Web, then you should be able to access the services listed in your midlet code.

Deploying into Production
Once your midlet development and testing is complete, you can package your application into an executable format by selecting the "Package" menu item from the "Project" menu. The toolkit will create a .jar and jad file in your project's \bin directory. The .jad file is used for describing and executing your midlet, while the .jar file contains the Java class files, library and resource files used by your midlet. From now on, simply double-clicking the .jad file will run the midlet.

Looking Ahead
In this article we've taken a look into the world of the wireless Web, XML-RPC as a Web service communication protocol, and the J2ME environment with special attention paid to the MID profile, and also looked at a demonstration of an XML-RPC midlet using the kxmlrpc code. XML-RPC provides a very thin, efficient means of invoking remote services in a standard and neutral way. It defines a succinct set of eight data types, providing the means necessary to encode simple and moderately complex data structures in a highly efficient manner. More often than not, XML-RPC will provide you with all the functionality that you need, especially given the natural constraints of wireless devices. For applications that require more functionality, the Simple Object Access Protocol (SOAP) may be in order. In our next article we'll delve into SOAP and provide a detailed analysis of when to choose SOAP over XML-RPC for wireless computing.

More Stories By Kyle Gabhart

Kyle Gabhart is a subject matter expert specializing in strategic planning and tactical delivery of enterprise technology solutions, blending EA, BPM, SOA, Cloud Computing, and other emerging technologies. Kyle currently serves as a director for Web Age Solutions, a premier provider of technology education and mentoring. Since 2001 he has contributed extensively to the IT community as an author, speaker, consultant, and open source contributor.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.