Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: @DevOpsSummit, Microservices Expo, @CloudExpo, Python

@DevOpsSummit: Article

Microservices and Python | @DevOpsSummit #DevOps #IoT #Microservices

Microservices, an app architecture style that leans mostly on independent, self-contained programs, are becoming the new norm

How Microservices Are Transforming Python Development
By Omed Habib

The goal of any tech business worth its salt is to provide the best product or service to its clients in the most efficient and cost-effective way possible. This is just as true in the development of software products as it is in other product design services.

Microservices, an app architecture style that leans mostly on independent, self-contained programs, are quickly becoming the new norm, so to speak. With this change comes a declining reliance on older SOAs like COBRA, a push toward more sustainable API approaches and fewer monolithic development and deployment models.

So why are microservices suddenly at the forefront of the software architecture conversation? They are changing how Python-based developers are getting things done in a way that’s far more efficient than before, and in more ways than one.

The Differences Between Microservices and SOAs
Diving deeper into the
differences between microservices and SOAs, you have to remember that, at their core, microservices are essentially an offshoot of SOAs, although they both act and deploy independently from each other.

SOAs also follow four major tenets during the development and deployment phases:

  • Their boundaries are inherently explicit.

  • They provide autonomous services.

  • Those services share both schema and contract but not class.

  • The compatibility of those services is policy-based.

Once you’ve established these distinctions, you can then make a far more accurate comparison between microservices and SOAs in that SOAs are architectural patterns that use their respective components to provide services to other components, within or without the same application. In microservices, only services independent of the application in question deploy those same components.

Although microservices are not a novel or inherently “new” architecture style, as much of their roots derive from the founding design principles found in Unix language, there are still several implications of an increase in productivity and innovation if more developers use microservices.

The Evolution of Microservices
Overall, the timeline for the evolution of Python-based apps, from monolithic to microservices, has been a relatively short one. On top of that, much of the evolution was born out of a necessity for forward progression and increased ease among developers.

It is widely accepted that microservices have more substance attached to them because they’ve done away with bulky XML-based schemas that large corporations are known for using in favor of slimmer applications that rely far less on bloat. Ultimately, microservices have become more common over time because they:

  • Can deploy independently of the core application

  • Can function properly while remaining separate from dependent responsibilities

  • Possess strong backward compatibility, making them less prone to breakage

Development team advantages include:

  • Allow for the decentralization of data management so teams and subteams can be responsible for maintenance on a far more granular level

  • Enable the use of infrastructure automation, from testing to deployment, without much need for human supervision

  • Faster ramp-up time for new team members means they can learn processes faster by focusing on smaller chunks of data.

There are still widely accepted, monolithic-first approaches within the development phase that development teams can break down into SOAs and, further still, into microservices. Some of the more successful applications still employ monolith-first patterns but in conjunction with the use of microservices and even nano-services.

A Word (or Two) on Nano Services
There’s plenty of support (and animosity) toward just how deep developers should go down the rabbit hole concerning
the development and use of nano-services. Just as you’d think, nano-services are simply components that designers have drilled down to an even more granular level than their microservices predecessors.

For some, it is a virtual splitting of hairs while, for others, it is yet another landscape that we have yet to understand fully and, therefore, properly utilize. Both sides can agree, however, that the status quo will likely share neither sentiment anytime soon.

Advantages of Microservices
While developers and the enterprise-level businesses they work for tend to flock toward the main codebase approach of a monolithic architecture for its benefits, there are also some pros that come with building a software product incrementally.

Microservices come with a unique set of advantages, some briefly mentioned earlier, that allow developers to create building blocks that they can then retrofit into an existing codebase as needed. Other significant advantages include:

  • There’s ability to change the implementation of a public API, without breaking it, the moment you define it and others start using it

  • The services are so small that they make maintenance from one developer to another easier to facilitate and understand.

  • There are no development language limitations, so you can use what’s best for you and your team.

  • It is easier to upgrade systems one microservice at a time than it is to upgrade a monolithic system.

  • Cross-implementation compatibility allows you to prototype in one language and re-implement in another.

  • Regardless of the size of your operation, if most of your product builds require more detailed components and adaptive development, then microservices are a better approach.

Current Microservices Implementations
Arguably, the
go-to implementation for most microservices today, Python-based or otherwise, is Docker. Aside from increased agility and control, many of today’s developers are embracing the ability to work remotely, so naturally any implementation that allows for more portability than the competition is greatly appreciated by the developer community.

Other popular implementations include but are not limited to:

  • Flask

  • MicroService4Net

  • Microsoft Service Fabric

  • NetKernel

  • Nirmata

  • Spring Cloud

Currently, the trend toward component development and product compartmentalization will continue as the need for customizable applications, and modular design becomes more prevalent.

Why Python?
Most Python developers who implement microservices during development likely use the
RESTful approach to creating an API, which is an all-inclusive way of utilizing available Web protocols and software to remotely search and manipulate objects.

Reverse engineered by Dr. Roy Fielding in 2000, RESTful microservices has a basic premise that follows three distinct canons:

  • You are required to use any provided links or other resources, making your application’s API browseable.

  • You are expected to recognize the uniform interface of HTTP.

  • You are expected to use each of the verbs (e.g., get, post, put, delete) without violating their own semantics.

Python’s Development Advantages
As mentioned before, you can implement and re-implement microservices across virtually every language, but with Python, there are several advantages that make working within it straightforward and convenient. They include:

  • So long as the API is formatted correctly, prototyping is easier and quicker than in other languages.

  • Instead of having to rely on full-fledged installations of implementations, like Django, you can use lighter installs that are just as powerful, like Flask and others.

  • Looking toward the future, it is a fantastic opportunity to start coding in Python 3, if you do not already.

  • Backward compatibility with legacy languages, like PHP and ASP, allows you to build Web service front ends to a host of microservices.

Furthermore, microservices help to optimize the performance of Python-developed applications two-fold:

  • They become easier to monitor, due to the fact apps are now broken up into components.

  • Performance issues become easier to identify, allowing for more granular diagnoses of flawed, bottlenecked or buggy services.

Moreover, for a design pattern that’s used by the likes of Google, Amazon, Microsoft, Netflix, Uber and more, there are no signs of this architecture going anywhere any time soon.

The Future of Microservices
Although it is easy to agree that the future of software architecture development is moving in the direction of increased modularity and microservices, that does not mean it will not come with its fair share of complications. This is doubly true for larger companies that have created much of their codebase with a monolithic approach in mind.

There are plenty of reasons why an industry-wide shift to microservices might fail, but there are a few challenges that developers and software architects should be mindful of in the coming years:

  • Complete software compatibility: With componentization, much of software’s success depends on its compatibility with its respective components and vice versa. Moving code from service to service becomes difficult, and a development team would need to orchestrate complete coordination.

  • Clean composition: If microservice components do not compose code cleanly, you are simply over complicating the inner workings of connections between their respective components. This shifts unnecessary stress and complexities to an area that’s harder to control.

  • Evolutionary design considerations: When you decide to work in an environment where you can break down components, you are faced with the challenge of figuring out how and where to break them down. It calls for making the risky decision of knowing what you can scrap or save from version 1.0 to version 5.1 and beyond far ahead of time.

  • Required skill sets: Not all teams are created equal. This means that because one team may have the skills required to adopt new techniques does not mean your team will. Foisting an ill-equipped team into uncharted territory could prove disastrous for your entire infrastructure.

Although the distinctions between SOAs and microservices might seem a bit minute, each one still has its intended purposes, whether you are using Python or any other development language.

The fact remains that microservices are only going to become more of necessity as development projects require more specific (and complex) functions and harness the interconnectedness that can come with coding for mutually independent services; however, these changes can, and may, come with a unique collection of augmentations and subsequent headaches.

The post How Microservices are Transforming Python Development appeared first on Application Performance Monitoring Blog | AppDynamics.

More Stories By AppDynamics Blog

In high-production environments where release cycles are measured in hours or minutes — not days or weeks — there's little room for mistakes and no room for confusion. Everyone has to understand what's happening, in real time, and have the means to do whatever is necessary to keep applications up and running optimally.

DevOps is a high-stakes world, but done well, it delivers the agility and performance to significantly impact business competitiveness.

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.