Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Linux Containers, Microservices Expo, Containers Expo Blog, Agile Computing, @DevOpsSummit

Linux Containers: Article

WebSocket Technology | @DevOpsSummit #DevOps #APM #Microservices

Considerations and best practices

Providing a full-duplex communication channel over a single TCP connection, WebSocket is the most efficient protocol for real-time responses over the web. If you're utilizing WebSocket technology, performance testing will boil down to simulating the bi-directional nature of your application.

Introduced with HTML5, the WebSocket protocol allows for more interaction between a browser and website, facilitating real-time applications and live content. WebSocket technology creates a persistent connection between the client and server, circumventing the requirement for a client-initiated HTTP request to trigger a server response. Providing a full-duplex communication channel over a single TCP connection, WebSocket is the most efficient protocol for real-time responses over the web.

If you're utilizing WebSocket technology, performance testing will boil down to simulating the bi-directional nature of your application.

Synchronous vs. Asynchronous Calls
First, you'll need to understand the kind of WebSocket communication your application is using: synchronous and asynchronous calls.

In addition to facilitating real-time applications, WebSockets are also used by web developers as a way of maintaining a faster, longer connection between client and server, even for traditional request-response purposes. This traditional request-response communication via WebSockets results in synchronous calls.

Asynchronous calls, on the other hand, do not require a client request to initiate a server response. The server automatically pushes information and updates over a single TCP connection (which remains open), allowing for an ongoing, bi-directional conversation.

Testers must be aware of the differences between the two in order to properly measure response times and validate the performance of their applications.

Considerations
Asynchronous Calls
Things can get a bit tricky when it comes to measuring the response times of asynchronous calls. Traditionally, testers would measure the time it takes from when a client sends a request and receives a response. With asynchronous calls, the end user's actions will determine server interactions and as such, it can be difficult to measure the time it takes to transport the message to the client, or latency.

Because messages are generated by external events and the server decides when to send messages to all connected clients, it's in testers' best interest to measure the time it takes for a client to receive a message after the triggering of an external event.

Synchronous Calls
Compared to asynchronous calls, measuring response times for synchronous calls is much easier and more straightforward. It's related to the Q&A approach where testers merely send a request and wait for the response.

Designing Tests
Designing test cases for synchronous calls is simple as testers will only need to understand each request/response as it relates to user interaction. The real challenge lies in designing tests for asynchronous calls.

The nature of asynchronous calls will change the logic required in designed load testing scenarios and testers will face many of the issues also associated with testing streaming media and long polling.

Limitations
Testers may face hardware and browser compatibility limitations when dealing with WebSockets. An open WebSocket channel facilitates a direct, open connection between the client and server. If there are thousands of customers or connections accessing data via your server, testers will need to adjust the backend  accordingly based on the number of sockets a single server can handle.

There are also a few browsers that don't support WebSocket communication. When this is the case, the application will replace the WebSocket communication with long polling. For performance engineers, this means creating two user paths for each use case (one using WebSockets, the other using long polling). To ensure realistic load testing, testers must take into account the ratio of browsers that are WebSocket compatible and ones that are not.

Tips for Load & Performance Testing WebSockets
Asynchronous Calls
The way you measure latency for asynchronous calls directly relates to the application framework. For example, when using Socket.IO, the inclusion of a timestamp within the WebSocket message should be a requirement. Testers can immediately send a message and then after receiving a response at the client level, calculate the time between the timestamps. There isn't a standard framework for WebSockets and out of the frameworks that do support WebSocket communication, few automatically include the timestamp. Testers may need to work with developers on including this information in messages. It may be a pain, but it's necessary to test the performance of WebSockets.

Synchronous Calls
To measure response times for synchronous calls, you'll need to make sure that your load testing solution first supports WebSocket technology. It should also be able to link the WebSocket request with the proper WebSocket response. It's important to note that the capability to test this asynchronous communication is a rarity among software testing products - choose your tool wisely.

Designing Tests
For newer testers and testers used to designing normal web scenarios, designing tests to handle calls via WebSocket can be confusing. It's going to come down to understanding your application and the nature of the request-response communication. When designing your tests, make sure you're reproducing the behavior of your application communicating with a real browser.

Designing test cases for synchronous calls, again, is fairly simple as these calls employ traditional request/response communication. To measure their performance, you'll need to equip your testing team with a load testing solution that enables testing of synchronous calls over WebSockets.

Designing test cases for asynchronous calls is a bit more challenging. In this case, users connected via WebSockets will take a specific action from the moment information is displayed on the screen. For example, a user might decide to purchase stock when the price reaches a certain level. Otherwise, the user may take no action at all. Keep in mind, the user action included in your use case depends on the information that does or does not arrive via the WebSocket channel.

Limitations
To address hardware issues, you'll need to ensure that you have several servers to balance the load accessing your WebSocket connections. Unlike HTTP communication where the connection is closed after a successful request-response interaction, WebSocket connections remain open. These connections will close if your servers are unable to handle the load, resulting in poor application performance for end users.

To combat browser incompatibility, you can introduce a WebSocket framework as a workaround. Otherwise, you'll need to design and execute polling scenarios during your load and performance testing.

The nature of WebSockets also poses challenges - it's a transport layer, so your project could be exchanging text data, binary data, etc. Performance engineers will need to decode or deserialize the WebSocket messages in order to correlate testing scenarios.

Conclusion
WebSockets simply provide a way to exchange data, so this technology isn't going to drastically change the way organizations deal with tests. Testing teams just have to understand the challenges they'll face when handling WebSockets-like browser incompatibility and collecting response times of asynchronous calls.

Ultimately, equipping your testing team with a load testing solution that not only provides the ability to test request-response apps that leverage WebSockets, but that can also manage the uninitiated responses sent by the server, will result in the most effective, realistic performance testing.

In terms of ensuring a seamless user experience, measuring the latency isn't enough. To truly validate the performance of an application utilizing WebSockets, you should combine your WebSocket load testing scenarios with scenarios on a browser-based tool like Selenium, but that is a topic for another post.

More Stories By Tim Hinds

Tim Hinds is the Product Marketing Manager for NeoLoad at Neotys. He has a background in Agile software development, Scrum, Kanban, Continuous Integration, Continuous Delivery, and Continuous Testing practices.

Previously, Tim was Product Marketing Manager at AccuRev, a company acquired by Micro Focus, where he worked with software configuration management, issue tracking, Agile project management, continuous integration, workflow automation, and distributed version control systems.

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.