Welcome!

Microservices Expo Authors: Elizabeth White, Pat Romanski, Kevin Jackson, John Katrick, Gopala Krishna Behara

Related Topics: Java IoT

Java IoT: Article

Distributed Logging Using The JMS

Distributed Logging Using The JMS

Every software system has logging requirements so application processing can be monitored and tracked. Modern distributed systems, which are usually based on application frameworks, require a logging solution that can cope with multiple processes on multiple hosts sending logging information to a single logging service.

Many application frameworks widely used today, whether they're high-level frameworks like J2EE application servers or low-level frameworks like CORBA ORBs, don't provide a distributed logging facility for application code. Using JMS queues to log application messages is a portable, framework-independent way to efficiently log messages in a distributed system.

Distributed Logging Solutions
It's usually a given that a distributed application needs to keep a centralized application log. We've seen many ad hoc solutions, which are often implemented on a per-application basis. A common way to develop these logging servers is to use low-level APIs, often with the C or Java socket APIs. Logging clients connect by opening a socket and pushing bytes to a log service. Since socket programming is low-level and often error-prone, the logging services are sometimes constructed with an RPC-based distributed object framework such as CORBA or RMI. This provides a higher layer of abstraction to work with, but it still means application developers have to build fundamental application services instead of focusing on the most important task at hand - building real business solutions.

Homegrown distributed logging services are often based on synchronously logging API calls. This means the logging client is forced to block while the logging service processes the message and makes a persistent record in the log. Implementations that support concurrent clients can encounter performance problems related to lock contention in the logging server. In some cases logging services will have internal message queues, so that blocking occurs only through the log message queuing and not throughout the entire logging process. While this approach takes care of the synchronous blocking problem, it's time-consuming and difficult to implement efficiently and reliably, particularly if the solution needs to be coordinated with global or distributed transactions. There are many issues to consider with regard to failure and recovery scenarios for the queue itself and the rules of interaction between the logging client and the logging service under such undesirable conditions.

This matter can be further complicated by geographically dispersed deployments. A distributed application may not be localized to one physical location. Globally distributed applications would presumably need to communicate with the centralized logging system in a secure and reliable fashion over the Internet. As illustrated in Figure 1, you'd likely funnel logging information through intermediate aggregation servers in order to play nice in a firewall environment. These intermediate logging services act as a common conduit that all local applications communicate through. Ideally, these intermediate aggregate servers would be capable of storing log information in case the centralized logging server became temporarily unavailable.

If you were to build a subsystem from scratch that solves all these issues, you'd wind up with something similar to a full-blown JMS queue implementation. Why not use one from the start? It makes perfect sense to base the logging server and its message queue on a common middleware standard and use a common off-the-shelf solution. JMS is an ideal middleware layer that enables distributed logging clients to log messages asynchronously in a uniform and platform-independent way.

It's a natural and pleasant experience to start using JMS to do the same kinds of things that are often done with system-level protocols. JMS has an added advantage as it provides multiple message types for dealing with different kinds of data formats, each with its own set of helper APIs for constructing and deconstructing messages. JMS also accounts for the problems that arise when the intended receivers aren't currently up and running - a crucial advantage for systems that require high reliability and accurate application logging. With JMS, senders and receivers are abstractly decoupled from each other. An application may send a message to an intended receiver, even when the receiver is not available. The JMS system stores messages on the receiver's behalf until the receiver is available. These are important system-level services that would otherwise have to be written by application programmers who could be more productive developing the actual business applications.

In addition, using JMS as the means for a logging mechanism provides the following benefits:

  • Simple, yet flexible standards-based API to be commonly shared among all applications.
  • Nonblocking asynchronous placement of log data into the log queue.
  • Guaranteed once-and-only-once delivery of critical log data to the centralized logging application.
  • Well-defined messaging models and message delivery semantics.
  • High availability of logging services. Error conditions and the complexities of failure scenarios are handled transparently by the JMS provider or in the interface between the application code and the JMS provider.
As shown in Figure 2, substituting a JMS system as the mechanism for delivering the log data to the centralized logging server removes a great deal of complexity that you would have had to build and manage.

JMS provides support for two messaging paradigms, publish/subscribe and queuing. Publish/subscribe is a broadcast model, which is analogous to an event service. Messages are published to virtual channels called topics and every client registered as a listener for a topic receives the message. Queuing is a point-to-point model. Clients send messages to designated endpoints where messages are en- queued. The message queue is persistent and can be thought of logically as a stack; a message pushed on to a queue will be delivered to a single message consumer. This article uses JMS queues for building application logs.

Logging Queue
Since we're using JMS, the hard work is already done. There's no need to write any infrastructure code at all: JMS provides virtually everything needed for a robust logging service. We need to provide only a logging service implementation that reads the log messages from the queue and does whatever is appropriate for the application. Since the queue is persistent, we don't worry about losing messages. For some JMS implementations, it's necessary to use an administrative console to set up the queue before clients can successfully connect to it. If that's the case, creating an administered object through the console is generally as simple as assigning a name. Self-administered JMS implementations don't require any setup.

Generic Entry Point
To use the queue as a basis for distributed logging, we'll need to define a mechanism for the logging client to write the JMS queue. In general, it's good programming practice to provide a layer of indirection between application code and protocol-specific APIs - the fact that we're using a JMS queue to support distributed logging should be completely transparent. This may be important if you already have a logging subsystem in place.

Migrating each application toward a JMS-based solution can be done separately, obviating the need to coordinate the upgrade of all applications in tandem. In other cases, your application server may provide distributed logging and management capabilities already. Preferably the transport mechanism is dynamically configurable. In Java, this is accomplished with interfaces and Factory classes. Finally, the logging API should be simple and straightforward. Listings 1 and 2 show a simple logging interface and implementation that uses a JMS server to write a log message to a queue. Many applications have more complex log message requirements, so this is an illustrative example.

Access to the client logging implementation is provided by a factory class (see Listing 3).

Log Processing
The logging server may send the data to any number of sources: files, databases, a terminal console, and more. It depends on the specific requirements of the application. In general, simple serialized logging to a file or a terminal console can be accomplished using a JMS MessageListener. The JMS server will automatically serialize messages, eliminating the need for lock management in the logging service code. Listing 4 provides an example of a MessageListener that logs messages to standard err on the terminal screen.

A more complicated logging service might interact with the queue and a database log using global transactions. It might also want to process many messages off the queue concurrently. For these kinds of requirements, an EJB 2.0 message-driven bean may be a more appropriate way to implement the processing logic of the logging service. The EJB container can provide support for global transaction management and concurrent message processing, greatly simplifying the development of the logging service. In addition, the EJB server should provide fault tolerance for the log service itself. In this case, the logging service might have to manage lock contention for writing to log files, but since writing to the log file has been decoupled from application processing by the JMS queue, this doesn't present a performance issue.

J2EE
J2EE-based applications are hosted by application servers that often run a single logical application in many different virtual machines. This allows the application server to transparently provide scalability and fault tolerance to applications built using J2EE components. Application servers are a perfect use case for a distributed logging facility because the replicated application server instances are all servicing clients of a single application. In most cases it's optimal for the application to use a single log. Servlets and EJBs can simply access a singleton logging client API similar to the one we presented above. JSP developers, on the other hand, shouldn't be forced to write Java code unless it's absolutely necessary. The JSP 1.1 specification provides a facility for writing custom tag extensions. A logging tag could be implemented as shown in Listing 5.

The tag we've defined can be used in a natural way by a JSP developer. Logging to the JMS queue in a JSP becomes as simple as adding a new element to an XML document:

<app:log message="Application successfully processed request." />

Another advantage to using JMS as the basis for distributed logging in a J2EE application is that JMS is a part of J2EE, so a JMS implementation will be provided with the application server. As a practical matter this means a JMS-based logging solution should not incur a large expense.

Beyond J2EE
A J2EE-based application is only one example of a distributed architecture, and J2EE accounts for only a fraction of distributed Java applications. Many Java applications rely on Java RMI or CORBA, directly on JMS, or on a low-level protocol such as Sockets for tying together distributed components. Applications based on any of these protocols and the architectures they suggest can benefit from a distributed log service. All the advantages of building a log service around JMS apply equally well to these applications. Many JMS vendors provide a set of C APIs for their JMS server implementation, which means that JMS can be used as a communication protocol with non-Java applications as well. Thus a JMS-based logging service can be used in a very broad context. It provides a flexible solution for large, heterogeneous enterprise computing environments.

Conclusion
A distributed logging service provides an ideal use-case for JMS. Using JMS, application information can be easily logged to a persistent queue and then processed asynchronously. Application-specific development is pushed to the boundaries of the log processing - time-consuming development of fundamental application services is avoided altogether. JMS also provides fault tolerance and scalability, so the application log can provide highly reliable information. Since EJB 2.0 now integrates JMS into the EJB container, global transactions and support for concurrent message processing can be provided transparently in the logging service.

More Stories By Dave Chappell

David Chappell is vice president and chief technologist for SOA at Oracle Corporation, and is driving the vision for Oracle’s SOA on App Grid initiative.

More Stories By Greg Pavlik

Greg Pavlik is an architect at Oracle. In this role he works on a combination of technology strategy, product development, and standards. He is currently responsible for Oracle’s SOA and Web services offerings. Greg is also the author of Java Transaction Processing (Prentice Hall, 2004).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
DevOps promotes continuous improvement through a culture of collaboration. But in real terms, how do you: Integrate activities across diverse teams and services? Make objective decisions with system-wide visibility? Use feedback loops to enable learning and improvement? With technology insights and real-world examples, in his general session at @DevOpsSummit, at 21st Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, explored how leading organizations use data-driven DevOps to close th...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
"WineSOFT is a software company making proxy server software, which is widely used in the telecommunication industry or the content delivery networks or e-commerce," explained Jonathan Ahn, COO of WineSOFT, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
Gaining visibility in today’s sprawling cloud infrastructure is complex and laborious, involving drilling down into tools offered by various cloud services providers. Enterprise IT organizations need smarter and effective tools at their disposal in order to address this pertinent problem. Gaining a 360 - degree view of the cloud costs requires collection and analysis of the cost data across all cloud infrastructures used inside an enterprise.
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone inn...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
Our work, both with clients and with tools, has lead us to wonder how it is that organizations are handling compliance issues in the cloud. The big cloud vendors offer compliance for their infrastructure, but the shared responsibility model requires that you take certain steps to meet compliance requirements. Which lead us to start poking around a little more. We wanted to get a picture of what was available, and how it was being used. There is a lot of fluidity in this space, as in all things c...
The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
The past few years have seen a huge increase in the amount of critical IT services that companies outsource to SaaS/IaaS/PaaS providers, be it security, storage, monitoring, or operations. Of course, along with any outsourcing to a service provider comes a Service Level Agreement (SLA) to ensure that the vendor is held financially responsible for any lapses in their service which affect the customer’s end users, and ultimately, their bottom line. SLAs can be very tricky to manage for a number ...
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
As many know, the first generation of Cloud Management Platform (CMP) solutions were designed for managing virtual infrastructure (IaaS) and traditional applications. But that's no longer enough to satisfy evolving and complex business requirements. In his session at 21st Cloud Expo, Scott Davis, Embotics CTO, explored how next-generation CMPs ensure organizations can manage cloud-native and microservice-based application architectures, while also facilitating agile DevOps methodology. He expla...
Admiral Calcote - also known as Lee Calcote (@lcalcote) or the Ginger Geek to his friends - gave a presentation entitled Characterizing and Contrasting Container Orchestrators at the 2016 All Day DevOps conference. Okay, he isn't really an admiral - nor does anyone call him that - but he used the title admiral to describe what container orchestrators do, relating it to an admiral directing a fleet of container ships. You could also say that they are like the conductor of an orchestra, directing...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
"We started a Master of Science in business analytics - that's the hot topic. We serve the business community around San Francisco so we educate the working professionals and this is where they all want to be," explained Judy Lee, Associate Professor and Department Chair at Golden Gate University, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...