Welcome!

Microservices Expo Authors: John Worthington, Liz McMillan, Elizabeth White, Stackify Blog, Pat Romanski

Related Topics: @ThingsExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, @CloudExpo, @DXWorldExpo

@ThingsExpo: Blog Feed Post

Internet of Things (IoT) – A Technical Primer | @ThingsExpo #IoT #M2M #API #Wearables

The Internet of Things is a worldwide network of objects and devices connected to the Internet

Internet of Things (IoT) - A Technical Primer
By Omed Habib

We are rapidly moving to a brave new world of interconnected smart homes, cars, offices and factories known as the Internet of Things (IoT). Sensors and monitoring devices will touch every part of our lives. Let's take a closer look at the Internet of Things.

What Is the Internet of Things?
The Internet of Things is a worldwide network of objects and devices connected to the Internet. They are electronics, sensors, software and more. These objects connect to the Internet and can be controlled remotely via apps and programs.

Because they can be accessed via the Internet, these devices create a tremendous opportunity to integrate computers and the physical world. They will improve our lives by making things more efficient and accurate, providing economic benefits derived from more effective use of resources.

How big will the Internet of Things become? Consider these statistics:

  • According to Gartner Incorporated, by the year 2020 the Internet of Things will consist of more than 26 billion devices.
  • A survey by Pew Research Internet Project showed that 83 percent of technology experts agreed that embedded sensors and wearable computers will have significant global benefits by 2025.
  • In 2015, the United Kingdom allocated more than 40 million pounds to research the Internet of Things.

Origin of the Term "Internet of Things"
The term "Internet of Things" was originated in 1999 by Kevin Ashton, an entrepreneur from Britain. The Internet of Things goes beyond what is currently known as machine-to-machine (M2M) communications - it is broader, encompassing a wide range of devices, services, and systems.

Because these devices are interconnected, many experts believe we will experience a new level of automation in nearly every field. For example, urban planners foresee "smart cities" that can better control transportation, utilities, power and other systems by continuously monitoring services with smart sensors.

Wide Variety of Devices
The Internet of Things includes almost anything that can be connected to the Internet and monitored remotely. Heart monitoring systems, biochips in animals, electric sensors in the oceans, cars with a complete set of sensors, devices that help rescue teams, and more can be considered part of the Internet of Things.

Each system collects data using a number of various technologies and then sends that data to other devices. A simple example is a thermostat in the home. It continuously adjusts the temperature of the room based on where the homeowner sets it. Another example is the growing use of sensors in washers and dryers that use Wi-Fi for remote operation and monitoring.

Shortage of Internet Addresses
Currently, a connection to the Internet involves an IPv4 address to identify that item. IPv4 has room for over 4.3 billion addresses. However, since experts expect there to be more than 30 to 50 billion devices on the Internet, this will not be enough.

IPv6 will be able to handle all of the addresses the world needs. The IPv6 address space can accommodate millions of objects, but also needs to be able to control devices, not just monitor them. That means that IPv6 is critical to the growth of the Internet of Things in the coming years.

Automating Home Sweet Home
Home automation
is another area that will experience rapid expansion in censoring and monitoring capabilities. For example, you can program your home system to start heating the water one half hour before you wake up so that it is ready when you want to take a shower.

These developments led to the term "smart home." The next extension of the smart home is connecting multiple smart homes together, tying them into a city and statewide grid to help improve energy efficiency, monitoring and emergency services allocations.

Local Networks and Devices
Internet of Things is a series of connected systems. It might be electronic prices on store shelves that change on demand, or city buses that commuters can track on their smartphone.

In the world of business, a company needs to decide which technology they should use. A large facility like a factory requires both actuators and sensors. In that case, a wireless network is probably the best choice because it can cover a large area.

Wireless sensor networks are low-cost and low-power and run on batteries. The edge node of the sensor network is the gateway, which might also have storage and a user interface.

Connectivity Solutions
Wi-Fi is common for connecting with devices, but it needs a tremendous amount of power. New technologies exist that are inexpensive and low-power. Researchers are developing many ideas including the following:

  • Low-power batteries that can last for many months
  • Energy harvesting as a power source
  • Mesh-networking that does not need attention from operators
  • Cutting-edge protocols for operating autonomously

For example, IEEE 802.14.5 is a protocol for personal wireless networks that has a low data rate and only uses 50 percent of the power of previous generations. Experts expect that they can cut the power needs by another 50 percent in the next few years.

Any individual protocol that transports IP packets has many advantages, but no single tech solution can cover every use case. There are too many variables to find one answer with a specific amount of power, efficiency, and range - all at a low cost. For that reason, every Internet protocol (UDP, TCP, SSL, HTTP and others) should be used as much as possible.

Embedded Systems
Embedded systems mean the software to run a device is on board the device itself. Examples include video cameras, microwaves, thermostats, and systems within cars.

Today's microprocessor chips have several processors, also known as cores, and a lot of cache memory. On the other hand, a microcontroller is substantially different. It is a single-chip and contains a processor, ROM memory, RAM memory, and I/O control unit and a clock. It is sometimes called, "a computer on a chip." These microcontrollers are embedded in thousands of products including appliances, automobiles, and toys. A car, for example, has more than 70 microcontrollers handling different functions.

Most microcontrollers handle one task. Microcontrollers are used a lot in the industry because they can be programmed to handle simple instructions and operations. They can open and close a gate, or turn a switch on and off. This simplicity makes it inexpensive to create machines with much functionality. Microcontrollers come in different sizes and power, and their processors range from 4-bit to 32-bit.

Deeply Embedded Devices
An extension of embedded systems is deeply embedded devices. Once the program has been burned into the memory, the system is not programmable and requires no interaction from a user.

Deeply embedded devices are usually single-purpose devices that monitor something, perform some processing, and perform a task. They usually have wireless capability, and often are seen in network situations where many sensors are spread over a large space, for instance in a factory or on a farm.

Modern Network Protocols
In the Internet of Things, embedded devices transfer information with each other. They do not have the equivalent of what people use: browsers and social media. The Internet of Things has different protocols than the current Internet.

The "human" Internet is based on the TCP/IP Internet protocol suite. It has the following:

  • Physical layer that includes physical devices
  • Data link layer
  • Network layer, which is where the Internet is located
  • The transport layer, which includes TCP and UDP, the two transport protocols

TCP is used for most interaction on the Internet. However, TCP (Transmission Control Protocol) can be "too much" for an embedded system. UDP (User Datagram Protocol) is a better answer for sensors and remote control of devices.

The next three layers above the transport layer are the application layer, presentation layer, and session layer. These include FTP (File Transfer Protocol), HTTP (Hypertext Transfer Protocol), and DHCP (Dynamic Host Configuration Protocol). You can make embedded devices with these protocols, but they might not be as efficient as newer protocols.

On the other hand, CoAP (Constrained Application Protocol) was specially made for embedded devices and the Internet of Things. It has many advantages:

  • Uses UDP
  • Low overhead
  • Synchronous and asynchronous communication

Another popular new protocol is MQTT (M2 Telemetry Transport). It is very lightweight, bandwidth efficient, and great for constrained networks.

Current web protocols like HTTP, XML and TCP, have a lot of data overhead. Robust newer protocols like CoAP, UDP and Web Objects are more efficient. They are optimized for constrained devices and have much lower data overhead - only tens of bytes rather than hundreds or even thousands of bytes.

Challenges
Along with the advantages, The Internet of Things presents several challenges. First, because everything is connected, hackers can figure out how to penetrate the systems. In April of 2014, for example, a hacker took control of a security camera in a home in Ohio. Although the manufacturer had upgraded the firmware to prevent access by outsiders, the family had not thought to upgrade the device.

This story indicates another problem: loss of privacy. If hackers can take control of devices in a home, couldn't the government, do the same thing? How much access should outside entities have to information about your health, credit rating, and other aspects of your private life? Moreover, when millions of devices are interconnected, wouldn't national security be compromised?

Summary
The Internet of Things holds a tremendous amount of promise for creating a better life for millions of people. Sensors and simple devices can make us more efficient and effective. They help use precious resources better and have the capability of solving significant problems from urban centers to rural areas. Researchers are racing to develop low-cost, low-power technology to keep up with the urgent demand for a better-connected world.

The post Internet of Things (IoT) - A Technical Primer appeared first on Application Performance Monitoring Blog | AppDynamics.

Read the original blog entry...

More Stories By AppDynamics Blog

In high-production environments where release cycles are measured in hours or minutes — not days or weeks — there's little room for mistakes and no room for confusion. Everyone has to understand what's happening, in real time, and have the means to do whatever is necessary to keep applications up and running optimally.

DevOps is a high-stakes world, but done well, it delivers the agility and performance to significantly impact business competitiveness.

@MicroservicesExpo Stories
identify the sources of event storms and performance anomalies will require automated, real-time root-cause analysis. I think Enterprise Management Associates said it well: “The data and metrics collected at instrumentation points across the application ecosystem are essential to performance monitoring and root cause analysis. However, analytics capable of transforming data and metrics into an application-focused report or dashboards are what separates actual application monitoring from relat...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
The benefits of automation are well documented; it increases productivity, cuts cost and minimizes errors. It eliminates repetitive manual tasks, freeing us up to be more innovative. By that logic, surely, we should automate everything possible, right? So, is attempting to automate everything a sensible - even feasible - goal? In a word: no. Consider this your short guide as to what to automate and what not to automate.
DevOps teams have more on their plate than ever. As infrastructure needs grow, so does the time required to ensure that everything's running smoothly. This makes automation crucial - especially in the server and network monitoring world. Server monitoring tools can save teams time by automating server management and providing real-time performance updates. As budgets reset for the New Year, there is no better time to implement a new server monitoring tool (or re-evaluate your current solution)....
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
Many enterprise and government IT organizations are realizing the benefits of cloud computing by extending IT delivery and management processes across private and public cloud services. But they are often challenged with balancing the need for centralized cloud governance without stifling user-driven innovation. This strategy requires an approach that fundamentally reshapes how IT is delivered today, shifting the focus from infrastructure to services aggregation, and mixing and matching the bes...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
We just came off of a review of a product that handles both containers and virtual machines in the same interface. Under the covers, implementation of containers defaults to LXC, though recently Docker support was added. When reading online, or searching for information, increasingly we see “Container Management” products listed as competitors to Docker, when in reality things like Rocket, LXC/LXD, and Virtualization are Dockers competitors. After doing some looking around, we have decided tha...
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
While we understand Agile as a means to accelerate innovation, manage uncertainty and cope with ambiguity, many are inclined to think that it conflicts with the objectives of traditional engineering projects, such as building a highway, skyscraper or power plant. These are plan-driven and predictive projects that seek to avoid any uncertainty. This type of thinking, however, is short-sighted. Agile approaches are valuable in controlling uncertainty because they constrain the complexity that ste...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...