Welcome!

Microservices Expo Authors: Liz McMillan, Elizabeth White, Charles Araujo, Ed Witkovic, Pat Romanski

Related Topics: @DevOpsSummit, Microservices Expo, Linux Containers, Open Source Cloud, Containers Expo Blog, Python

@DevOpsSummit: Blog Feed Post

Secure Container Delivery Pipelines with Docker @DevOpsSummit #DevOps #Microservices

A PaaS-like model that are automatically combined with an Ops-owned container definition

Building Effective, Secure Container Delivery Pipelines with Docker, rkt et al.

Opinions on how best to package and deliver applications are legion and, like many other aspects of the software world, are subject to recurring trend cycles. On the server-side, the current favorite is container delivery: a “full stack” approach in which your application and everything it needs to run are specified in a container definition. That definition is then “compiled” down to a container image and deployed by retrieving the image and passing it to a container runtime to create a running instance.

Here, I’d like to talk about how we can apply lessons from experience of shipping code using many different formats in order to build effective, secure Container Delivery pipelines.

container-build-pipeline

The way it’s described above, container delivery does not sound much different from most other packaging and deployment models: replace container image with WAR file, AMI or OVA and the process looks pretty much the same. A trivial point, perhaps, but one worth making: the fact that containers aren’t that different from other full stack formats means that there are quite a few lessons that we’ve already learned which we can apply to the process of building and delivering containers.

One thing certainly does stand out in the general discussion around container delivery, however: the strong emphasis on how containers apparently will “empower the developer” and “free them from the shackles of Ops.” Unlike delivering, say, a WAR file, .NET application or Rails app, however, a container is not just a bundle of traditional “application code”. It includes all the other levels of the software stack, right down to the operating system.

Most container technologies provide nice mechanisms that mean that developers generally don’t have to bother with the actual details of configuring all the lower levels, but can inherit these from a base image instead. In most cases, though, the developer – as the “deliverer” of the final artifact – is still ultimately responsible for the entire container.

The point being: application developers often aren’t expert at, or even particularly interested in, the levels of the system below the application tier. The tendency more frequently – and I’ve fallen victim to this temptation myself – is to “just quickly change this setting because I read in that Stack Overflow post that it might fix the problem we’re having.”

This is especially tempting with containers as a distribution format because the “system levels” are encapsulated in the base image and so are practically invisible – a generally very desirable characteristic. With other full stack packaging formats – OVAs, Virtual Boxes, AMIs and the like – the system levels are not abstracted away as much, so it feels more logical that Ops should play a role in the production process of such packages.

Not that the “in your face” presence of the system levels is something we want to repeat: arguably, one of the reasons the other formats haven’t caught on in the way many hope containers will is precisely because they have such a comparatively heavyweight feel. Still, as the recent discussions about the number of insecure images in the Docker Registry shows, we need to find a way to add more Ops-side input into the container delivery process than is common today.

The points below assume that the development team is indeed ultimately responsible for the definition of the entire system. Different models are possible with containers, too. For example, you could have a PaaS-like model in which the developers provide app components that are automatically combined with an Ops-owned container definition. However, I would not call this a container delivery model because here the container definition is not the deliverable, but a runtime implementation detail.

Here, then, are my “food for thought” discussion points for building effective, secure container delivery pipelines.

1. Developers provide container definitions in SCM

The container definition – Dockerfile or other, higher-level definition that “compiles down” to a container descriptor – is the source deliverable, and so should be stored as a versioned artifact in a source control repository.

2. Container definitions and dependencies are compiled to container images in an Ops-controlled environment

Concretely: the build or CI system that generates the container images from the container definitions should not be owned or administered by the development team. This helps ensure that all Ops-related checks that need to be executed against the container definitions and associated dependencies are carried out correctly.

Implementing this recommendation does not require the entire CI setup to be controlled by Ops. For example, you could limit direct publish access to your image registry to an Ops-managed “image build service”, which could be called from a developer-run CI server.

3. Minimal base image catalog is enforced

Just as many build environments for application code enforce a whitelist of libraries and other allowed dependencies, your container pipeline should only process container definitions that inherit from a whitelisted set of supported base images. From a maintenance perspective, this whitelist should be as small as possible.

If exceptions need to be made – a particular project requires a component that can only run on a specific OS, for example – these should be limited to container definitions for that specific project.

4. Developer-provided container definitions can be pre-processed to choose a different base image

Requiring development teams to manually update their container definitions in source control whenever the base image whitelist is updated, e.g. after a security patch, is tedious and creates unnecessary delay. Instead, the image build system should be able to automatically choose a different base image, if necessary, with suitable notification back to the development team.

Container definition formats that allow symlink-style image references, such as Docker via the latest tag, can support this out-of-the-box. However, you may want to exert more fine-grained control over base image choice, such as automatically replacing a reference to an explicitly-specified version such as v10.4.8 by v10.4.9 if 10.4.9 contains an important security patch.

5a. Developer-provided container definitions can be scanned to enforce particular policies

In general, even though image inheritance means that developers generally don’t need to mess with lower-level system settings in their container definitions, nothing prevents them from doing so. For example, the container definition could change the security configuration of the OS, install insecure versions of libraries, create open mail relays etc. etc.

Ideally, code review that includes Ops will prevent such changes from ever making it into the container definition. You will most likely also be running security scans against your running container instances to try to catch such problems after the fact. The ability to automatically check for “problematic” parts of a container definition at image build time – having a linter for container definitions, if you will – is an additional tool that should be in your toolbox, however.

5b. Developer-provided containers can be “black box” tested to enforce particular policies

If the previous point can be described as “white box” testing of container definitions, then this point is about black box testing of the resulting image: ensure that your image build system is able to create instances of new container definitions in a safe/sandbox environment and run assertions (using a tool such as Cucumber or similar) against them.

6. Images in your registry that were created from a particular base image can be invalidated

The ability to enforce a base image whitelist at build time should prevent any new container images from referencing insecure or otherwise unsupported base images. But what about all those images already in your registry that inherited from such a base image? How do you prevent new container instances being created from those?

Consider implementing a system that allows you to check, just before spinning up a container instance from an image, whether that image is still “safe”. This can be as simple as creating a wrapper for your ‘instantiate container’ command that checks for the absence of an ‘unsupported’ tag or other piece of metadata on the image, or as advanced as a plugin or extension that hooks directly into your container runtime.

7. Images derived from a “banned” base image can be rebuilt using an updated base image automatically

When a base image is banned, you want to be able to immediately trigger new container image builds, using an updated base, for each container definition inheriting from the now banned base image. Otherwise, you won’t have any runnable container images for that application until the next code change, or until someone manually triggers the delivery pipeline for that app, since the latest version is now “unsafe”.

Note that I’m not trying to recommend this as a “standard” part of the image build process – the correct way to create new container definitions once a base image is invalidated is definitely to update the container definition in source control and allow the pipeline to build a new image version based on that. Rather, this capability is a stop-gap solution to help bridge the gap until the new image is available.

8. Post-deployment commands can be automatically run against running containers

While all the new image versions are building, you’ll still have plenty of running container instances that use the now banned base image. In that case, it’s very useful to be able to specify commands to be run automatically against all container instances that meet a certain condition (such as inheriting from a particular base image).

Modifying containers at runtime in this way is generally frowned upon, and this capability should again only be considered a temporary fix until new image versions based on updated container definitions in source control have been built, and all running instances have been updated.

But if you have large numbers of running container instances and many images that need rebuilding (which might take quite some time – think build storm), the ability to quickly apply an “emergency band-aid” can be essential. Even if it only takes a few minutes until all the new images have been built and all running container instances have been updated, that can still be a big problem in the face of a critical security vulnerability.

And finally…

For inspiration ;-)


How Shipping Containers are Made


With thanks to Boyd Hemphill for his thoughtful review comments.

XebiaLabs develops enterprise-scale Continuous Delivery and DevOps software, providing companies with the visibility, automation and control to deliver software faster and with less risk. Learn how…

The post Building Effective, Secure Container Delivery Pipelines with Docker, rkt et al. appeared first on XebiaLabs.

Read the original blog entry...

More Stories By XebiaLabs Blog

XebiaLabs is the technology leader for automation software for DevOps and Continuous Delivery. It focuses on helping companies accelerate the delivery of new software in the most efficient manner. Its products are simple to use, quick to implement, and provide robust enterprise technology.

@MicroservicesExpo Stories
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The purpose of this article is draw attention to key SaaS services that are commonly overlooked during contact signing that are essential to ensuring they meet the expectations and requirements of the organization and provide guidance and recommendations for process and controls necessary for achieving quality SaaS contractual agreements.
What's the role of an IT self-service portal when you get to continuous delivery and Infrastructure as Code? This general session showed how to create the continuous delivery culture and eight accelerators for leading the change. Don Demcsak is a DevOps and Cloud Native Modernization Principal for Dell EMC based out of New Jersey. He is a former, long time, Microsoft Most Valuable Professional, specializing in building and architecting Application Delivery Pipelines for hybrid legacy, and cloud ...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
Docker is sweeping across startups and enterprises alike, changing the way we build and ship applications. It's the most prominent and widely known software container platform, and it's particularly useful for eliminating common challenges when collaborating on code (like the "it works on my machine" phenomenon that most devs know all too well). With Docker, you can run and manage apps side-by-side - in isolated containers - resulting in better compute density. It's something that many developer...
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
We all know that end users experience the internet primarily with mobile devices. From an app development perspective, we know that successfully responding to the needs of mobile customers depends on rapid DevOps – failing fast, in short, until the right solution evolves in your customers' relationship to your business. Whether you’re decomposing an SOA monolith, or developing a new application cloud natively, it’s not a question of using microservices - not doing so will be a path to eventual ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Archi...
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure ...
We all know that end users experience the internet primarily with mobile devices. From an app development perspective, we know that successfully responding to the needs of mobile customers depends on rapid DevOps – failing fast, in short, until the right solution evolves in your customers' relationship to your business. Whether you’re decomposing an SOA monolith, or developing a new application cloud natively, it’s not a question of using microservices - not doing so will be a path to eventual ...
We all know that end users experience the Internet primarily with mobile devices. From an app development perspective, we know that successfully responding to the needs of mobile customers depends on rapid DevOps – failing fast, in short, until the right solution evolves in your customers' relationship to your business. Whether you’re decomposing an SOA monolith, or developing a new application cloud natively, it’s not a question of using microservices – not doing so will be a path to eventual b...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
JetBlue Airways uses virtual environments to reduce software development costs, centralize performance testing, and create a climate for continuous integration and real-time monitoring of mobile applications. The next BriefingsDirect Voice of the Customer performance engineering case study discussion examines how JetBlue Airways in New York uses virtual environments to reduce software development costs, centralize performance testing, and create a climate for continuous integration and real-tim...