Welcome!

Microservices Expo Authors: Automic Blog, Don MacVittie, XebiaLabs Blog, Elizabeth White, Dalibor Siroky

Related Topics: @DevOpsSummit, Microservices Expo, Linux Containers, Containers Expo Blog

@DevOpsSummit: Blog Feed Post

Full-Stack Docker Performance Monitoring By @MayrAlois | @DevOpsSummit #DevOps #Containers

Docker containerization is increasingly being used in production environments

Full-Stack Docker Performance Monitoring: From Containers to Applications
By Alois Mayr

Docker containerization is increasingly being used in production environments. How can these environments best be monitored? Monitoring Docker containers as if they are lightweight virtual machines (i.e., monitoring the host from within the container), with all the common metrics that can be captured from an operating system, is an insufficient approach. Docker containers can’t be treated as lightweight virtual machines; they must be treated as what they are: isolated processes running on hosts. Why? Because they are processes that start and terminate quickly. Virtual machines aren’t designed to run for only a short time and then be terminated. Likewise, processes serve specific tasks while virtual machines typically serve multiple tasks.

Utilize Docker’s Remote API
Monitoring an environment at the container level is a great first step towards understanding the dynamics of containers in your environment. Many tools use the Docker Remote API to capture host resource consumption metrics related to CPU, memory, and network IO for each container. This is valuable information that operators can use when allocating host resources to containers.

Docker Stats CLI

Details of container dynamics in an environment can be captured by querying the Docker API of all Docker engines. For example, you can learn which hosts run containers that use a specific image. With the current move towards microservices, this becomes more important as Docker images are built for each service. You need to know on which machines the containers for a specific service are running.

Hosts and container overview

Docker containers and orchestration technologies like Docker Swarm, Mesos/Marathon, and Kubernetes offer means of deploying, running, and scaling applications and microservices. The whole Docker ecosystem is a fantastic enabler for running microservices in dynamic cloud-based environments.

But how can you know if the services you’ve deployed are okay and if they’re working as designed? This is where application performance management enters the game.

It’s what’s running inside that counts
When it comes to application monitoring, you’re mostly interested in the services running inside containers rather than the containers themselves. You need application-centric information to ensure that the applications served by your containers are running as expected. You need CPU-time breakdowns for your application at the method level. You also need to inspect database queries, measure throughput and response times for services, and track communication between microservices across containers and hosts.

Docker container insights with Ruxit

Monitoring microservices within containers
If you need to run your services at scale, Docker containers and orchestration tools are an ideal approach. No matter if services are stateless or stateful, load balancers send traffic to the respective containers once they’re properly configured.

Docker service visibility

To monitor the health of your application’s services, you need intuitive infographics that show you the most important metrics for each service. With this approach you can track throughput, average response time,failure rate, and most time consuming requests that are processed by all containers for each service.

If you need deep insights about a specific condition, select a time frame and analyze the metrics from that period in detail.

Find performance hotspots at the method level
Deep application performance analysis includes the ability to identify hotspots that contribute to the response time of a request. This enables you to pinpoint the service methods that consume the most CPU, disk, or network time for each request. In our example below, you can see the method that consumes the most CPU time for a Java service running in Docker containers.

Docker performance monitoring with method-level break down

Measure database query execution times and frequencies
Analyzing queries to and responses from databases is an essential aspect of performance tuning and therefore a core feature of application monitoring. This also holds true for monitoring applications that run in containers, no matter if the databases are served by other containers or not.

Inspecting all SQL statements and NoSQL queries sent by an application tells you about average query response times, execution frequency, numbers of fetched rows/executions, and failure rate. With this information you can optimize caching and query behavior on the application end, not to mention optimizing each database statement.

Database statement analysis

Track JVM metrics in Docker containers
Tracking Java heap memory metrics
enables you to see if your JVM’s garbage collection works as expected and if there is a memory shortage. Memory shortage is the #1 cause of increased garbage collection times. You can see how long a JVM is suspended due to garbage collection and then fine-tune memory settings accordingly. In our example below, you can see a JBoss process running within a Docker container on an AWS ECS cluster.

JVM metrics in containerized Java process

Full-stack Docker performance monitoring
Since you can use and run Docker containers virtually everywhere, and you can run almost anything within containers, monitoring needs to keep up with Docker’s dynamic and portable approach. Docker performance monitoring needs to cover many entities beyond just the container and application space.

For example, monitoring must be able to automatically handle the dynamics of virtual environments where virtual instances come and go frequently and where ephemeral Docker containers may only live for a few seconds or minutes. If you run an end-user facing web application in your environment you should also monitor user actions and detect Javascript errors in your customers’ browsers.

The table below shows you how monitoring various aspects of your environment, including Docker containers, can provide answers to different questions related to the performance of your applications.

What do you need for what?

Are all my machines healthy?
(CPU usage, memory, disk latency)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringWhich components communicate with one another?
(Network connections between processes)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringAre the processes responsive?
(Process response time and availability)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringDoes the network allow for proper process communication?
(Traffic, TCP requests, connection timeouts, retransmissions)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringAre the containers healthy?
(CPU usage, memory, network IO)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringWhich images have been deployed?
(Hosts with containers using same image)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringWhere are new services deployed?
(New instances, containers, service deployments)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringAre my application services responsive?
(Response time, failure rate, workload)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringWhich code parts are critical?
(CPU, disk, network time spent on a method, exceptions)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringDo the databases respond quickly?
(Query execution frequency, response time, and failure rate)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringAre the message queues fast enough?
(Message response time, failure rate)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringHow does heap memory usage change over time?
(Memory used in the generations)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringWhat is the average web response time experienced by users per region?
(Response time, number of user actions, Apdex rating)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb MonitoringAre my applications available and functional?
(Periodic availability checks and SLA reports)
Server MonitoringNetwork MonitoringDocker MonitoringApplication MonitoringWeb Monitoring

Monitoring data captured for the entities listed above must be put into context and analyzed along with all other entities and related dependencies. For example, user action duration (web monitoring) for customers in a specific region may be high despite the fact that the web servers and backend services show low CPU usage (server monitoring or Docker monitoring). Let’s assume that the network connections are also fast (network monitoring). The problem may be due to too few worker threads for the Apaches within the containers (application monitoring) or there may be an overloaded ESXi host with a high CPU ready time for the respective VM (cloud monitoring).

In other words, full-stack monitoring requires that you monitor all entities with a single solution that can analyze and interpret monitoring data from across your technology stack.

What’s next?
Go for Ruxit! Not convinced that Ruxit can really monitor all the entities that I’ve outlined in this post? Then test drive Ruxit for yourself! Simply sign up for the free trial, install Ruxit Agent on your Docker hosts, and you’ll be all set for deep, full-stack monitoring of your Docker environment.

The post Full-stack Docker performance monitoring: From containers to applications appeared first on #monitoringlife.

Read the original blog entry...

More Stories By Dynatrace Blog

Building a revolutionary approach to software performance monitoring takes an extraordinary team. With decades of combined experience and an impressive history of disruptive innovation, that’s exactly what we ruxit has.

Get to know ruxit, and get to know the future of data analytics.

@MicroservicesExpo Stories
The benefits of automation are well documented; it increases productivity, cuts cost and minimizes errors. It eliminates repetitive manual tasks, freeing us up to be more innovative. By that logic, surely, we should automate everything possible, right? So, is attempting to automate everything a sensible - even feasible - goal? In a word: no. Consider this your short guide as to what to automate and what not to automate.
We just came off of a review of a product that handles both containers and virtual machines in the same interface. Under the covers, implementation of containers defaults to LXC, though recently Docker support was added. When reading online, or searching for information, increasingly we see “Container Management” products listed as competitors to Docker, when in reality things like Rocket, LXC/LXD, and Virtualization are Dockers competitors. After doing some looking around, we have decided tha...
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
Many enterprise and government IT organizations are realizing the benefits of cloud computing by extending IT delivery and management processes across private and public cloud services. But they are often challenged with balancing the need for centralized cloud governance without stifling user-driven innovation. This strategy requires an approach that fundamentally reshapes how IT is delivered today, shifting the focus from infrastructure to services aggregation, and mixing and matching the bes...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
identify the sources of event storms and performance anomalies will require automated, real-time root-cause analysis. I think Enterprise Management Associates said it well: “The data and metrics collected at instrumentation points across the application ecosystem are essential to performance monitoring and root cause analysis. However, analytics capable of transforming data and metrics into an application-focused report or dashboards are what separates actual application monitoring from relat...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
DevOps teams have more on their plate than ever. As infrastructure needs grow, so does the time required to ensure that everything's running smoothly. This makes automation crucial - especially in the server and network monitoring world. Server monitoring tools can save teams time by automating server management and providing real-time performance updates. As budgets reset for the New Year, there is no better time to implement a new server monitoring tool (or re-evaluate your current solution)....
While we understand Agile as a means to accelerate innovation, manage uncertainty and cope with ambiguity, many are inclined to think that it conflicts with the objectives of traditional engineering projects, such as building a highway, skyscraper or power plant. These are plan-driven and predictive projects that seek to avoid any uncertainty. This type of thinking, however, is short-sighted. Agile approaches are valuable in controlling uncertainty because they constrain the complexity that ste...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...