Welcome!

Microservices Expo Authors: Pat Romanski, Elizabeth White, Liz McMillan, Charles Araujo, Flint Brenton

Related Topics: Microservices Expo, Industrial IoT

Microservices Expo: Article

Long-Running Transactions in SOA

Transaction management in long running service based activities

Most organizations that have tried have been successful in implementing a pliable Service Oriented Architecture (SOA) paradigm. Analysts have come out with strategies to translate existing applications into SOA-compliant systems using a staggered approach. The rewards reaped come in the form of low-cost maintenance and agility in their business, along with reusable and self-contained services. But there are still challenges in this form of service-based architecture and solutions need to be devised.

One of the biggest hurdles has been coordinating technology-agnostic services into a single long-running unit of work that produces predictable results. The transactions running across multiple services over multiple domains need to be synchronized to maintain business integrity. Currently organizations depend on proprietary solutions to coordinate transactions for data consistency. This article will walk you through the definition of long-running transaction in SOA and its challenges then talk about the various approaches to resolving the issue while retaining the characteristics of a service-based architecture.

ACID Applications
Applications utilize multiple services across different modules or layers to serve a particular business need. For example, security authentication, service information, EIS information, updating services need to coordinate in a business unit termed a transaction thatcomprehends data consistency and business integrity in an organization.

Transactions are a set of operations that must be executed entirely or not at all. The fault-tolerance mechanism of managing transactions is to maintain the so-called ACID properties: A - Atomicity (all or none), C - Consistency (the resource must start and end in a consistent state), I - Isolation (make the transactions appear isolated from all the other operations) and D - Durability (once notified, the transaction will persist). ACID provides concurrency in operations and retains data integrity.

ACID properties are easier to implement on transactions that run only a short time because during a transaction the resources are held in a locked state. Transactions that run for a long time can't afford to lock up resources. Till date, an ACID transaction assumes closely coupled systems that aren't an SOA-mandated environment. So the ACID properties in a long-running activity need to be applied so that locking doesn't occur, or if it does, then the duration of the locking is as short as possible.

Long-Running Transactions in Service-Crowded Systems
To understand the concept of a long-running transaction, we need to look first into the various lifetimes of a transaction. A transaction lifetime can be defined as the minimum amount of time a transaction is kept open. This time period can be anywhere from a few seconds to several hours. A transaction with a short lifetime can begin and end in a matter of seconds, while a long-running transaction can be alive for minutes, hours, even days depending upon the underlying business requirements and implementation. Transactions with a short lifetime are easy to handle since the resources they use can be locked for the time required by maintaining the ACID properties. But the same strategy can't be applied to long-running transactions. Locking up resources for a long time can seriously hamper the application's performance bringing in unnecessary deadlock situations and long wait-times. Any transaction left in an open state for an indefinite amount of time qualifies as a long-running transaction.

The following scenarios make long-running transactions possible:

  1. A transaction with lots of database queries
  2. B2B transactions
  3. Batch processes
  4. Pseudo-Asynchronous activities within a transaction
In a long running transaction with multiple queries made to the database, the failure of any single query would result in a transaction failure that requires rolling back completely to the previously saved safe state of the database. The scenario might be across different data sources across different administrative domains.

Batch processes run for long periods of time, usually for hours. Regularly backing up sensitive data is an example. In most cases, batch processes only involve reading data and hence not many transactional issues are encountered. But in certain cases these long batch processes can include modifying the data. A failure during that operation would require an equally long rollback process.

Pseudo-asynchronous activities are used in concurrent activities but the transactions are resumed at some kind of notification. Such operations can be trivial to handle as the control is passed on completely and there is a complex or no way back to reach the sender once the activity is completed. This results in a complex scenario where an independent or intelligently handled rollback needs to be initiated on the source.

In a SOA each functionality is separated as a service. So, a certain application may use many services to provide a defined functionality. The principles of SOA define services as separate platform- and system-independent entities - each capable of functioning on their own, thus providing reusability and interoperability across disparate platforms.

A long-running transaction creates a number of problems in a SOA architecture. As long as a transaction is limited to a closed environment, catching faults or exceptions and triggering the appropriate rollback mechanism can easily be defined in the underlying application architecture. For example, a transaction involving a database as a resource would already have mechanisms defined in it to handle errors and do rollbacks. Even in a distributed database environment these things can be taken care of. Imagine the same situation in an open SOA scenario where each transactional query is executed on an altogether different platform or system. How a rollback would be implemented in such a case is just one of the immediate questions that comes to mind.

Let's consider a scenario where the transaction involves the participation of three different services - each performing a particular operation. Only if all three operations are successful would the transaction be deemed a success. Any other outcome would result in the transaction being marked as a failure. Then, if and when the transaction fails, appropriate recovery measures have to be implemented. And to top it off, we can lock a resource only for the time when the service local to the resource is operating.

Troubles Within
Let's look into the problems encountered with long-running transactions in SOA. They can be referred to as failure cases:

  1. The participation of multiple services results in multiple endpoints being invoked during one cycle of the transaction. Any of these services can be down at the instance when the transaction is in process.
  2. SOA boasts of loosely coupled systems. Maintaining transactions is only possible in closely coupled systems.
  3. The services involved can be based on any platform. Because of the disparity among the underlying implementation of the services, a context can't be deployed across the services to manage the transactions.
  4. The current status in the flow of the transaction can't be known at a given instance.
  5. Ifasynchronous services are involved in the transaction they can't be reached back, unless the service information is explicitly passed on.
  6. Resources can't be kept in a locked state for long periods of time. To free a resource once the service is done with it, it must release it. Doing this can cause a problem later on if the service fails and a rollback is issued throughout all the services.
  7. Alternate methods need to be devised to perform the appropriate recovery operations. In most cases these methods are either platform-specific or too dependent on the underlying business process.
Viable Methodologies
Any methodology that tries to implement transaction management for a long-running transaction scenario in a SOA needs to make sure to:
  1. Uniquely identify a transaction across the various participating services
  2. Guarantee that the data is delivered and the notifications are sent
  3. Some compensation must be provided in case something goes wrong during the transaction
  4. Errors in asynchronous services have to be addressed
Keeping these points in mind, the following are some ways to manage long-running transactions in SOA:
  1. A compensation methodology
  2. Transaction coordinator
Methodology 1: Compensation
In an ideal situation any changes done during a long-running transaction must be reverted back to the original content in case there's a failure somewhere else along the flow of the transaction. This is precisely what happens in a closed environment and is known as a rollback. In a SOA architecture, a situation might arise where a rollback isn't an option. In that case, instead of a rollback, compensation is provided. For example, in WS choreography, the self-reliant services pass control messages back and forth to notify the participating services of a rollback operation.

Compensation may be defined as the most logical change applied to the resource to maintain data consistency and integrity. How it's constructed depends on the governing business rules and underlying technical implementation of the services. In certain cases, compensation can include a rollback. In the example above, if the transaction fails at the third service (the transaction is uniquely identified by an id throughout its lifetime), we need to perform a compensatory operation at the previous service to negate the effect caused by the transaction. So, if the second service sent out an e-mail announcing that it has implemented the changes, a compensatory operation would be to send another e-mail announcing the failure of the transaction and that the changes have been undone. A synchronous process showcasing the scenario is illustrated in Figure 1.

But what if the services participating in the process are asynchronous, as one would expect in a long-running transaction? One way would be to save states and service information.

Methodology 2: Transaction Coordinator
A more appropriate solution would be to orchestrate the process using a transaction manager or process coordinator. Instead of inter-service communication, the services would be answerable to the coordinator, which in turn would handle all the transaction and compensation scenarios. Once again the transaction will be uniquely identified throughout the transaction cycle by an id. This would help the coordinator perform compensatory operations on the required set of data. The coordinator can manage the service information as well. This would solve any issues with asynchronous services. Figure 2 illustrates the coordinator service. This kind of methodology is used mostly in service orchestration-type applications and is a more centralized approach unlike methodology 1.

Case study - Money Transfer Scenario
Consider a money transfer scenario (Figure 4) where a complete transaction process involves five different services. All five services are separated by virtue of both system and the language of implementation.

The first service, the initiation service, is exposed to the client to pick up the user input. It validates the necessary input parameters and processes the transaction by sequentially executing the credit service and the debit service. Then the system notifies the stakeholder and the internal logs for auditing.

With no transaction context involved in this processing, the services are executed independently with no knowledge of the member service status. There's no way for the executed services to rollback and for specific reasons:

  1. Service status isn't shared
  2. Non-availability of co-ordination federation in the processing
  3. Compensation services for revoking the services
Let's take one of the approaches and bridge the gaps. The solution is to have a coordinator orchestrating though the services and managing the transaction context. The coordinator invariably stores the status of the services and maintains the transaction supporting the ACID properties.

The coordinator receives the input and generates an id to uniquely identify the transaction. An acknowledgement is sent to the initiation service as RECEIVED. The initiation service notifies the client about the start of the process and provides the unique transaction id. The client can use this transaction id to monitor and track the transaction. The initiation service is now ready to take further client input. The coordinator maintains a log to record each operation it performs. The log is created against the transaction id.

After generating the id for the transaction, the coordinator calls the external service of the bank, which accepts the money. This credit service takes the necessary input and starts updating the records in the database. Depending upon the style of the compensation, state information is saved before the update process initiates. Once the update takes place successfully, an acknowledgement to the coordinator is sent. (Figure 3)

The coordinator then logs the changes and proceeds to call the debit service. The debit service makes the necessary changes to the local database to reflect the debit. The debit process follows the same pattern as the credit process. On successful operation, a DEBITED acknowledgement is sent to the coordinator. The coordinator notifies each service involved of successful individual transactions at each step by means enacts the 2PC execution. When there's a failure, the coordinator runs the compensation service for each activity.

Conclusion
The long-running transaction is designed specifically for business interactions that take a long time. The intention is to tie the logical single business-to-business unit of work across heterogeneous domains. Each methodology depends on the architecture of the system and the existing assets in the organization. Technical analysts need to differentiate such special transaction in the SOA study and deal with them through special defined methodologies.

References
1.  William Cox. "Transactional Web Services."
http://dev2dev.bea.com/pub/a/2004/01/cox.html

2.  Pat Helland. "Why I hate the phrase Long running Transactions..."
http://blogs.msdn.com/pathelland/archive/2004/08/12/213552.aspx

3.  Wikipedia Atomic Transactions:
http://en.wikipedia.org/wiki/Atomic_transaction
Database Transactions:
http://en.wikipedia.org/wiki/Database_transaction
Two-phase commit protocol:
http://en.wikipedia.org/wiki/2-phase_commit
ACID properties:
http://en.wikipedia.org/wiki/ACID

More Stories By Anshuk Pal Chaudhari

The authors are interning and/or working as part of the Web Services COE (Center of Excellence) for Infosys Technologies, a global IT consulting firm, and have substantial experience in publishing papers, presenting papers at conferences, and defining standards for SOA and Web services. The Web Services COE specializes in SOA, Web services, and other related technologies.

More Stories By Bijoy Majumdar

Bijoy Majumdar is a member of the Web Services COE (Center of Excellence) for Infosys Technologies, a global IT consulting firm, and has substantial experience in publishing papers, presenting papers at conferences, and defining standards for SOA and Web services. Prior to Infosys, Bijoy Majumdar worked as an IT Analyst, and had been a member of the GE Center of Excellence (e-center) under the E-Business Practice of Tata Consultancy Services.

More Stories By Sunny Saxena

Sunny Saxena currently works with the Web Services Centre of Excellence in SETLabs, the technology research division at Infosys Technologies, India. His interests range from Web service security platforms to aspect-oriented development models.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
When you focus on a journey from up-close, you look at your own technical and cultural history and how you changed it for the benefit of the customer. This was our starting point: too many integration issues, 13 SWP days and very long cycles. It was evident that in this fast-paced industry we could no longer afford this reality. We needed something that would take us beyond reducing the development lifecycles, CI and Agile methodologies. We made a fundamental difference, even changed our culture...
In his session at 20th Cloud Expo, Mike Johnston, an infrastructure engineer at Supergiant.io, discussed how to use Kubernetes to set up a SaaS infrastructure for your business. Mike Johnston is an infrastructure engineer at Supergiant.io with over 12 years of experience designing, deploying, and maintaining server and workstation infrastructure at all scales. He has experience with brick and mortar data centers as well as cloud providers like Digital Ocean, Amazon Web Services, and Rackspace. H...
You often hear the two titles of "DevOps" and "Immutable Infrastructure" used independently. In his session at DevOps Summit, John Willis, Technical Evangelist for Docker, covered the union between the two topics and why this is important. He provided an overview of Immutable Infrastructure then showed how an Immutable Continuous Delivery pipeline can be applied as a best practice for "DevOps." He ended the session with some interesting case study examples.
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his general session at @DevOpsSummit at 19th Cloud Expo, Eric Robertson, General Manager at CollabNet, will discuss how customers are able to achieve a level of transparency that e...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
The taxi industry never saw Uber coming. Startups are a threat to incumbents like never before, and a major enabler for startups is that they are instantly “cloud ready.” If innovation moves at the pace of IT, then your company is in trouble. Why? Because your data center will not keep up with frenetic pace AWS, Microsoft and Google are rolling out new capabilities. In his session at 20th Cloud Expo, Don Browning, VP of Cloud Architecture at Turner, posited that disruption is inevitable for comp...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
Your homes and cars can be automated and self-serviced. Why can't your storage? From simply asking questions to analyze and troubleshoot your infrastructure, to provisioning storage with snapshots, recovery and replication, your wildest sci-fi dream has come true. In his session at @DevOpsSummit at 20th Cloud Expo, Dan Florea, Director of Product Management at Tintri, provided a ChatOps demo where you can talk to your storage and manage it from anywhere, through Slack and similar services with...
Containers are rapidly finding their way into enterprise data centers, but change is difficult. How do enterprises transform their architecture with technologies like containers without losing the reliable components of their current solutions? In his session at @DevOpsSummit at 21st Cloud Expo, Tony Campbell, Director, Educational Services at CoreOS, will explore the challenges organizations are facing today as they move to containers and go over how Kubernetes applications can deploy with lega...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Learn how to solve the problem of keeping files in sync between multiple Docker containers. In his session at 16th Cloud Expo, Aaron Brongersma, Senior Infrastructure Engineer at Modulus, discussed using rsync, GlusterFS, EBS and Bit Torrent Sync. He broke down the tools that are needed to help create a seamless user experience. In the end, can we have an environment where we can easily move Docker containers, servers, and volumes without impacting our applications? He shared his results so yo...
Don’t go chasing waterfall … development, that is. According to a recent post by Madison Moore on Medium featuring insights from several software delivery industry leaders, waterfall is – while still popular – not the best way to win in the marketplace. With methodologies like Agile, DevOps and Continuous Delivery becoming ever more prominent over the past 15 years or so, waterfall is old news. Or, is it? Moore cites a recent study by Gartner: “According to Gartner’s IT Key Metrics Data report, ...
Enterprise architects are increasingly adopting multi-cloud strategies as they seek to utilize existing data center assets, leverage the advantages of cloud computing and avoid cloud vendor lock-in. This requires a globally aware traffic management strategy that can monitor infrastructure health across data centers and end-user experience globally, while responding to control changes and system specification at the speed of today’s DevOps teams. In his session at 20th Cloud Expo, Josh Gray, Chie...
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbraith, a principal engineer at HPE, discussed how to build a fully functional Kubernetes cluster on a number of virtual machines or bare-metal hosts. Also included will be a brief demonstration of running a Galera MyS...
Many organizations are now looking to DevOps maturity models to gauge their DevOps adoption and compare their maturity to their peers. However, as enterprise organizations rush to adopt DevOps, moving past experimentation to embrace it at scale, they are in danger of falling into the trap that they have fallen into time and time again. Unfortunately, we've seen this movie before, and we know how it ends: badly.
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
In IT, we sometimes coin terms for things before we know exactly what they are and how they’ll be used. The resulting terms may capture a common set of aspirations and goals – as “cloud” did broadly for on-demand, self-service, and flexible computing. But such a term can also lump together diverse and even competing practices, technologies, and priorities to the point where important distinctions are glossed over and lost.