Click here to close now.

Welcome!

@MicroservicesE Blog Authors: Lori MacVittie, Cloud Best Practices Network, Liz McMillan, Elizabeth White, Michael Kanasoot

Related Topics: @MicroservicesE Blog, Java IoT, Linux Containers, IoT User Interface, Agile Computing, @BigDataExpo Blog

@MicroservicesE Blog: Article

Understanding Application Performance on the Network | Part 5

Processing Delays

In Part IV, we wrapped up our discussions on bandwidth, congestion and packet loss. In Part V, we examine the four types of processing delays visible on the network, using the request/reply paradigm we outlined in Part I.

Server Processing (Between Flows)
From the network's perspective, we allocate the time period between the end of a request flow and the beginning of the corresponding reply flow to server processing. Generally speaking, the server doesn't begin processing a request until it has received the entire flow, i.e., the last packet in the request message; similarly, the server doesn't begin sending the reply until it has finished processing the request. We sometimes refer to these delays between flows as "pure" processing delays, distinct from another type of intra-flow processing delay we call starved for data and discuss later. Server processing delays occur as a result of a request message, and therefore always occur within a thread.

Transaction Trace Illustrations
These "pure" server processing delays are generally relatively simple to detect, to understand, and to prove. Transaction Trace's Node Processing table lists all of the observed processing delays for an operation in tabular format; by splitting this table with the Bounce Diagram and highlighting a row of interest, the Bounce Diagram will display the last packet of the request flow and the first packet of the corresponding reply flow, effectively diagramming the measurement.

Use the Node Processing Table split with the Bounce Diagram to illustrate node processing delay

You may also use the Thread Analysis split with the Bounce Diagram; this will provide a view of the request and reply packet flows as well as the processing measurement.

Split the Thread View with the Bounce Diagram to illustrate the request flow, node processing and reply flow

Starved for Data (Sending Node, Within a Flow)
Sometimes, the network interface will be able to transmit data at a rate faster than the sending application can deliver to the TCP socket. For example, a busy ftp server may momentarily interrupt sending a large file because of a disk, memory or CPU bottleneck. We refer to these pauses that occur in the middle of a flow as "starved for data" conditions; there is nothing on the network (no TCP flow control constraint) preventing the request or reply flow from continuing, so the cause must be internal to the sending node. Starved for data bottlenecks occur within a flow (instead of between flows), and are related to the sending node - either the client or server.

Transaction Trace Illustration
These cases can be more difficult to visualize. Since the condition is generally not too common, it is often best to rule out other performance bottlenecks first, before checking for data starvation. When it does occur, the condition has the effect of extending the duration of a request or reply flow, and starved for data delays are included in Transaction Trace's Node Sending measurements. Sort the rate column of the Node Sending Table and split the window with the Bounce Diagram; the Bounce Diagram will illustrate the packets associated with a sending measurement. For those sending measurements where you suspect a starved for data condition, look for idle periods of time where the sending node's flow has been interrupted. Importantly, a starved for data delay will terminate with the transmission of a data packet that resumes the sender's flow, not a TCP ACK from the receiver that might suggest a TCP or application window constraint.

The Node Sending table is split with the Bounce Diagram to help illustrate Starved for Data conditions; note the pause in transmission that resumes independent of any TCP ACK.

Client Processing (Between Flows)
From the network's perspective, we allocate the time period between the end of a reply flow and the beginning of the next request flow to client processing. Generally speaking, the client cannot begin processing a reply until it has received the entire reply flow, i.e., the last packet of the reply message; similarly, the client doesn't begin sending the next (new) request until it has completed processing the reply. (This correlation generally applies to request/reply flows on the same TCP connection.)

Transaction Trace Illustrations
Similar to server processing delays, client delays are relatively simple to understand. In most cases, client delays occur between threads; in other words, after one thread has completed but before the next thread begins. For tasks with thread-level decodes, Transaction Trace's Thread Analysis Gantt chart view can illustrate these delays well.

Gaps between threads are associated with client processing delays

Discounting Client Processing
Note that we assume strict adherence to the definition of "operation" here; click to screen update. If the trace has captured multiple steps - say the user navigates through a series of operations - then the user "think time" between steps will appear as client processing delay, with corresponding gaps between threads. You may still use these multi-step tasks for analysis, remembering to discount client processing delays. Alternatively, you can save each step as a separate task by selecting a sequence of threads from the Thread table.

For more network strategies, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
Many people recognize DevOps as an enormous benefit – faster application deployment, automated toolchains, support of more granular updates, better cooperation across groups. However, less appreciated is the journey enterprise IT groups need to make to achieve this outcome. The plain fact is that established IT processes reflect a very different set of goals: stability, infrequent change, hands-on administration, and alignment with ITIL. So how does an enterprise IT organization implement change...
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Mashape is bringing real-time analytics to microservices with the release of Mashape Analytics. First built internally to analyze the performance of more than 13,000 APIs served by the mashape.com marketplace, this new tool provides developers with robust visibility into their APIs and how they function within microservices. A purpose-built, open analytics platform designed specifically for APIs and microservices architectures, Mashape Analytics also lets developers and DevOps teams understand w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud envir...
Sumo Logic has announced comprehensive analytics capabilities for organizations embracing DevOps practices, microservices architectures and containers to build applications. As application architectures evolve toward microservices, containers continue to gain traction for providing the ideal environment to build, deploy and operate these applications across distributed systems. The volume and complexity of data generated by these environments make monitoring and troubleshooting an enormous chall...
Containers and Docker are all the rage these days. In fact, containers — with Docker as the leading container implementation — have changed how we deploy systems, especially those comprised of microservices. Despite all the buzz, however, Docker and other containers are still relatively new and not yet mainstream. That being said, even early Docker adopters need a good monitoring tool, so last month we added Docker monitoring to SPM. We built it on top of spm-agent – the extensible framework f...
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
SYS-CON Events announced today that the "Second Containers & Microservices Conference" will take place November 3-5, 2015, at the Santa Clara Convention Center, Santa Clara, CA, and the “Third Containers & Microservices Conference” will take place June 7-9, 2016, at Javits Center in New York City. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
The causality question behind Conway’s Law is less about how changing software organizations can lead to better software, but rather how companies can best leverage changing technology in order to transform their organizations. Hints at how to answer this question surprisingly come from the world of devops – surprising because the focus of devops is ostensibly on building and deploying better software more quickly. Be that as it may, there’s no question that technology change is a primary fac...