Click here to close now.


Microservices Expo Authors: Lori MacVittie, Pat Romanski, Jason Bloomberg, Elizabeth White, Yeshim Deniz

Related Topics: Microservices Expo, Java IoT, Linux Containers, Containers Expo Blog, IoT User Interface, @BigDataExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 2

Bandwidth and Congestion

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the framework we introduced in Part I. I'll use graphics from Compuware's application-centric protocol analyzer - Transaction Trace - as illustrations.

We define bandwidth delay as the serialization delay encountered as bits are clocked out onto the network medium. Most important for performance analysis is what we refer to as the "bottleneck bandwidth" - the speed of the link at its slowest point - as this will be the primary influencer on the packet arrival rate at the destination. Each packet incurs the serialization delay dictated by the link speed; for example, at 4Mbps, a 1500 byte packet takes approximately 3 milliseconds to be serialized. Extending this bandwidth calculation to an entire operation is relatively straightforward. We observe (on the wire) the number of bytes sent or received and multiply that by 8 bits, then divide by the bottleneck link speed, understanding that asymmetric links may have different upstream and downstream speeds.

Bandwidth effect = [ [# bytes sent or received] x [8 bits] ]/ [Bottleneck link speed]

For example, we can calculate the bandwidth effect for an operation that sends 100KB and receives 1024KB on a 2048Kbps link:

  • Upstream effect: [100,000 * 8] / 2,048,000] = 390 milliseconds
  • Downstream effect: [1,024,000 *8] / 2,048,000] = 4000 milliseconds

For better precision, you should account for frame header size differences between the packet capture medium - Ethernet, likely - and the WAN link; this difference might be as much as 8 or 10 bytes per packet.

Bandwidth constraints impact only the data transfer periods within an operation - the request and reply flows. Each flow also incurs (at a minimum) additional delay due to network latency, as the first bit traverses the network from sender to receiver; TCP flow control or other factors may introduce further delays. (As an operation's chattiness increases, its sensitivity to network latency increases and the overall impact of bandwidth tends to decrease, becoming overshadowed by latency.)

Transaction Trace Illustration: Bandwidth
One way to frame the question is "does the operation use all of the available bandwidth?" The simplest way to visualize this is to graph throughput in each direction, comparing uni-directional throughput with the link's measured bandwidth. If the answer is yes, then the operation bottleneck is bandwidth; if the answer is no, then there is some other constraint limiting performance. (This doesn't mean that bandwidth isn't a significant, or even the dominant, constraint; it simply means that there are other factors that prevent the operation from reaching the bandwidth limitation. The formula we used to calculate the impact of bandwidth still applies as a definition of the contribution of bandwidth to the overall operation time.)

This FTP transfer is frequently limited by the 10Mbps available bandwidth.

Networks are generally shared resources; when there are multiple connections on a link, TCP flow control will prevent a single flow from using all of the available bandwidth as it detects and adjusts for congestion. We will evaluate the impact of congestion next, but fundamentally, the diagnosis is the same; bandwidth constrains throughput.

Congestion occurs when data arrives at a network interface at a rate faster than the media can service; when this occurs, packets must be placed in an output queue, waiting until earlier packets have been serviced. These queue delays add to the end-to-end network delay, with a potentially significant effect on both chatty and non-chatty operations. (Chatty operations will be impacted due to the increase in round-trip delay, while non-chatty operations may be impacted by TCP flow control and congestion avoidance algorithms.)

For a given flow, congestion initially reduces the rate of TCP slow-start's ramp by slowing increases to the sender's Congestion Window (CWD); it also adds to the delay component of the Bandwidth Delay Product (BDP), increasing the likelihood of exhausting the receiver's TCP window. (We'll discuss TCP slow-start as well as the BDP later in this series.)

As congestion becomes more severe, the queue in one of the path's routers may become full. As packets arrive exceeding the queue's storage capacity, some packets must be discarded. Routers employ various algorithms to determine which packets should be dropped, perhaps attempting to distribute congestion's impact among multiple connections, or to more significantly impact lower-priority traffic. When TCP detects these dropped packets (by a triple-duplicate ACK, for example), congestion is the assumed cause. As we will discuss in more depth in an upcoming blog entry, packet loss causes the sending TCP to reduce its Congestion Window by 50%, after which slow-start begins to ramp up again in a relatively conservative congestion avoidance phase.

For more on congestion, and for further insight, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@MicroservicesExpo Stories
For it to be SOA – let alone SOA done right – we need to pin down just what "SOA done wrong" might be. First-generation SOA with Web Services and ESBs, perhaps? But then there's second-generation, REST-based SOA. More lightweight and cloud-friendly, but many REST-based SOA practices predate the microservices wave. Today, microservices and containers go hand in hand – only the details of "container-oriented architecture" are largely on the drawing board – and are not likely to look much like S...
Despite all the talk about public cloud services and DevOps, you would think the move to cloud for enterprises is clear and simple. But in a survey of almost 1,600 IT decision makers across the USA and Europe, the state of the cloud in enterprise today is still fraught with considerable frustration. The business case for apps in the real world cloud is hybrid, bimodal, multi-platform, and difficult. Download this report commissioned by NTT Communications to see the insightful findings – registra...
Manufacturing has widely adopted standardized and automated processes to create designs, build them, and maintain them through their life cycle. However, many modern manufacturing systems go beyond mechanized workflows to introduce empowered workers, flexible collaboration, and rapid iteration. Such behaviors also characterize open source software development and are at the heart of DevOps culture, processes, and tooling.
Any Ops team trying to support a company in today’s cloud-connected world knows that a new way of thinking is required – one just as dramatic than the shift from Ops to DevOps. The diversity of modern operations requires teams to focus their impact on breadth vs. depth. In his session at DevOps Summit, Adam Serediuk, Director of Operations at xMatters, Inc., will discuss the strategic requirements of evolving from Ops to DevOps, and why modern Operations has begun leveraging the “NoOps” approa...
Between the compelling mockups and specs produced by analysts, and resulting applications built by developers, there exists a gulf where projects fail, costs spiral, and applications disappoint. Methodologies like Agile attempt to address this with intensified communication, with partial success but many limitations. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, will present a revolutionary model enabled by new technologies. Learn how busine...
DevOps has often been described in terms of CAMS: Culture, Automation, Measuring, Sharing. While we’ve seen a lot of focus on the “A” and even on the “M”, there are very few examples of why the “C" is equally important in the DevOps equation. In her session at @DevOps Summit, Lori MacVittie, of F5 Networks, will explore HTTP/1 and HTTP/2 along with Microservices to illustrate why a collaborative culture between Dev, Ops, and the Network is critical to ensuring success.
The APN DevOps Competency highlights APN Partners who demonstrate deep capabilities delivering continuous integration, continuous delivery, and configuration management. They help customers transform their business to be more efficient and agile by leveraging the AWS platform and DevOps principles.
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at @DevOpsSummit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction....
With containerization using Docker, the orchestration of containers using Kubernetes, the self-service model for provisioning your projects and applications and the workflows we built in OpenShift is the best in class Platform as a Service that enables introducing DevOps into your organization with ease. In his session at DevOps Summit, Veer Muchandi, PaaS evangelist with RedHat, will provide a deep dive overview of OpenShift v3 and demonstrate how it helps with DevOps.
The last decade was about virtual machines, but the next one is about containers. Containers enable a service to run on any host at any time. Traditional tools are starting to show cracks because they were not designed for this level of application portability. Now is the time to look at new ways to deploy and manage applications at scale. In his session at @DevOpsSummit, Brian “Redbeard” Harrington, a principal architect at CoreOS, will examine how CoreOS helps teams run in production. Attende...
IT data is typically silo'd by the various tools in place. Unifying all the log, metric and event data in one analytics platform stops finger pointing and provides the end-to-end correlation. Logs, metrics and custom event data can be joined to tell the holistic story of your software and operations. For example, users can correlate code deploys to system performance to application error codes.
Containers are revolutionizing the way we deploy and maintain our infrastructures, but monitoring and troubleshooting in a containerized environment can still be painful and impractical. Understanding even basic resource usage is difficult - let alone tracking network connections or malicious activity. In his session at DevOps Summit, Gianluca Borello, Sr. Software Engineer at Sysdig, will cover the current state of the art for container monitoring and visibility, including pros / cons and li...
As the world moves towards more DevOps and microservices, application deployment to the cloud ought to become a lot simpler. The microservices architecture, which is the basis of many new age distributed systems such as OpenStack, NetFlix and so on, is at the heart of Cloud Foundry - a complete developer-oriented Platform as a Service (PaaS) that is IaaS agnostic and supports vCloud, OpenStack and AWS. In his session at 17th Cloud Expo, Raghavan "Rags" Srinivas, an Architect/Developer Evangeli...
In their session at DevOps Summit, Asaf Yigal, co-founder and the VP of Product at, and Tomer Levy, co-founder and CEO of, will explore the entire process that they have undergone – through research, benchmarking, implementation, optimization, and customer success – in developing a processing engine that can handle petabytes of data. They will also discuss the requirements of such an engine in terms of scalability, resilience, security, and availability along with how the archi...
In a report titled “Forecast Analysis: Enterprise Application Software, Worldwide, 2Q15 Update,” Gartner analysts highlighted the increasing trend of application modernization among enterprises. According to a recent survey, 45% of respondents stated that modernization of installed on-premises core enterprise applications is one of the top five priorities. Gartner also predicted that by 2020, 75% of
DevOps Summit at Cloud Expo 2014 Silicon Valley was a terrific event for us. The Qubell booth was crowded on all three days. We ran demos every 30 minutes with folks lining up to get a seat and usually standing around. It was great to meet and talk to over 500 people! My keynote was well received and so was Stan's joint presentation with RingCentral on Devops for BigData. I also participated in two Power Panels – ‘Women in Technology’ and ‘Why DevOps Is Even More Important than You Think,’ both ...
The web app is agile. The REST API is agile. The testing and planning are agile. But alas, data infrastructures certainly are not. Once an application matures, changing the shape or indexing scheme of data often forces at best a top down planning exercise and at worst includes schema changes that force downtime. The time has come for a new approach that fundamentally advances the agility of distributed data infrastructures. Come learn about a new solution to the problems faced by software organ...
All we need to do is have our teams self-organize, and behold! Emergent design and/or architecture springs up out of the nothingness! If only it were that easy, right? I follow in the footsteps of so many people who have long wondered at the meanings of such simple words, as though they were dogma from on high. Emerge? Self-organizing? Profound, to be sure. But what do we really make of this sentence?
There once was a time when testers operated on their own, in isolation. They’d huddle as a group around the harsh glow of dozens of CRT monitors, clicking through GUIs and recording results. Anxiously, they’d wait for the developers in the other room to fix the bugs they found, yet they’d frequently leave the office disappointed as issues were filed away as non-critical. These teams would rarely interact, save for those scarce moments when a coder would wander in needing to reproduce a particula...