Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Yeshim Deniz, Pat Romanski, Zakia Bouachraoui

Related Topics: Microservices Expo, Java IoT, Linux Containers, Machine Learning , Agile Computing, @DXWorldExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 1

A foundation for network triage

As a network professional, one of your newer roles is likely troubleshooting poor application performance. For most of us, our jobs have advanced beyond network "health," towards sharing - if not owning - responsibility for application delivery. There are many reasons for this more justifiable than the adage that the network is first to be blamed for performance problems. (Your application and system peers feel they are first to be blamed as well.) Two related influencing trends come to mind:

  1. Increased globalization, coupled with (in fact facilitated by) inexpensive bandwidth means that the network is becoming a more critical part of the business at the same time its constraint is shifting from bandwidth to latency.
  2. Many of the network devices - appliances - that sit in the path between remote offices and data centers are application-fluent, designed to enhance and speed application performance, often by spoofing application behaviors; in fact, many of these have evolved in response to problems introduced by increased network latency.

In an ideal world, your application performance management (APM) solution or your application-aware network performance management (AANPM) solution would automatically isolate the fault domain for you, providing all the diagnostic evidence you need to take the appropriate corrective actions. The reality is that this isn't always the case; intermittent problems, unexpected application or network behaviors, inefficient configuration settings, or just a desire for more concrete proof mean that manual troubleshooting remains a frequent exercise. Although it may seem like there are a near-unlimited number of root causes of poor application performance, and that trial and error, guesswork and finger-pointing are valid paths toward resolution, the truth is much different. In a series of network triage blog posts, I'll identify the very limited realm of possible performance constraints, explain how to measure and quantify their impact, illustrate these using network packet trace diagrams, and offer meaningful and supportable actions you might evaluate to correct the problem. Understanding how to detect these possible performance problems (there are twelve altogether) will help you troubleshoot faster, more accurately, with greater insight, while collaborating more effectively with your application and system peers.

In this introductory entry, I present the request/reply application paradigm assumption upon which most of the analyses depend, illustrate key packet-level measurements, and provide a list of the 12 bottleneck categories we'll discuss in future blog entries to the series.

Packet Flow Diagrams
Throughout the blog series I will be using packet flow diagrams to illustrate message flows on the network, often to emphasize TCP's influence on these flows. Some are drawings to illustrate concepts and theory, others are screenshots from Compuware's Transaction Trace Analysis that illustrate the pertinent performance bottleneck. The diagram conventions are simple:

  • Each arrow represents one TCP packet
  • Blue arrows are used to represent data packets
  • Red arrows are used to represent TCP ACK packets
  • The slope of the arrow represents network delay
  • Time flows from top to bottom

Terminology
We will frequently use the term "operation," which we define as the unit of work that an application performs on behalf of a user; we sometimes describe it as "Click (or Enter key) to screen update." Business transactions are made up of one or more operations; for example, a user may click through a series of screens (operations) to complete a customer order update. Operations are an important demarcation point, as they represent the unique performance dimension important to the business, to the user, and to IT. The time a user waits for the system to execute an operation impacts business transaction performance and therefore productivity, and is dictated by the performance of lower-level IT-managed hardware, software and services. Note that this terminology may differ somewhat from network probes that often use the term "transaction" to reference session-layer request-response exchanges, which we discuss next.

Request/Reply Paradigm
We assume a client/server or request/reply paradigm, with TCP as the transport; this covers virtually all of what we might refer to as interactive business applications. It would include, for example, web-based apps, "fat client" apps, file server access, file transfers, backups, etc. It specifically excludes voice and video streaming as well as the presentation tier of thin-client solutions that use protocols such as ICA and PCoIP.

For each operation, there will be at least one application-level request and one corresponding application-level reply. These can be considered application messages, sometimes referred to as application-layer protocol data units (PDUs). Consider a simple client-server operation. At the application layer, a request message is passed to the client's TCP stack (TCP socket) for segmentation (into packets), addressing, and transmission; these lower layer TCP stack functions are essentially transparent to the application. At the receiving end (the server), the data from the network packets is reassembled into the application layer message and delivered to the listener service for processing. Once processing is complete, the server application passes the reply message to the server's TCP stack, and the message contents are similarly segmented and transferred across the network to the client. The performance of these request/reply message exchanges is constrained by two factors; message processing (at the server or client) and message transmission (across the network).

It is helpful, then, to consider this request/reply message exchange as the basis for performance analysis; the reassembled messages represent our network-centric insight into the application, while the packets visible in the trace file inform us how efficiently the network transports these messages.

For further insight click here for the full article, and stay tuned for Part II.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Microservices Articles
"We do one of the best file systems in the world. We learned how to deal with Big Data many years ago and we implemented this knowledge into our software," explained Jakub Ratajczak, Business Development Manager at MooseFS, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addresse...
Consumer-driven contracts are an essential part of a mature microservice testing portfolio enabling independent service deployments. In this presentation we'll provide an overview of the tools, patterns and pain points we've seen when implementing contract testing in large development organizations.
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure ...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
In his session at 20th Cloud Expo, Scott Davis, CTO of Embotics, discussed how automation can provide the dynamic management required to cost-effectively deliver microservices and container solutions at scale. He also discussed how flexible automation is the key to effectively bridging and seamlessly coordinating both IT and developer needs for component orchestration across disparate clouds – an increasingly important requirement at today’s multi-cloud enterprise.
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
Most DevOps journeys involve several phases of maturity. Research shows that the inflection point where organizations begin to see maximum value is when they implement tight integration deploying their code to their infrastructure. Success at this level is the last barrier to at-will deployment. Storage, for instance, is more capable than where we read and write data. In his session at @DevOpsSummit at 20th Cloud Expo, Josh Atwell, a Developer Advocate for NetApp, will discuss the role and value...