Welcome!

Microservices Expo Authors: Liz McMillan, Cynthia Dunlop, Carmen Gonzalez, Yeshim Deniz, Karyn Jeffery

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, Cloud Security

@CloudExpo: Article

Real-Time Fraud Detection in the Cloud

Using machine learning agent ensembles

This article explores how to detect fraud among online banking customers in real-time by running an ensemble of statistical and machine learning algorithms on a dataset of customer transactions and demographic data. The algorithms, namely Logistic Regression, Self-Organizing Maps and Support Vector Machines, are operationalized using a multi-agent framework for real-time data analysis. This article also explores the cloud environment for real-time analytics by deploying the agent framework in a cloud environment that meets computational demands by letting users' provision virtual machines within managed data centers, freeing them from the worry of acquiring and setting up new hardware and networks.

Real-time decision making is becoming increasingly valuable with the advancement of data collection and analytics techniques. Due to the increase in the speed of processing, the classical data warehousing model is moving toward a real-time model. A platform that enables the rapid development and deployment of applications, reducing the lag between data acquisition and actionable insight has become of paramount importance in the corporate world. Such a system can be used for the classic case of deriving information from data collected in the past and also to have a real-time engine that reacts to events as they occur. Some examples of such applications include:

  • A product company can get real-time feedback for their new releases using data from social media
  • Algorithmic trading by reacting in real times to fluctuations in stock prices
  • Real-time recommendations for food and entertainment based on a customer's location
  • Traffic signal operations based on real-time information of volume of traffic
  • E-commerce websites can detect a customer transaction being authentic or fraudulent in real-time

A cloud-based ecosystem enables users to build an application that detects, in real-time, fraudulent customers based on their demographic information and financial history. Multiple algorithms are utilized to detect fraud and the output is aggregated to improve prediction accuracy.

The dataset used to demonstrate this application comprises of various customer demographic variables and financial information such as age, residential address, office address, income type, income frequency, bankruptcy filing status, etc. The dependent variable (the variable to be predicted) is called "bad", which is a binary variable taking the value 0 (for not fraud) or 1 (for fraud).

Using Cloud for Effective Usage of Resources
A system that allows the development of applications capable of churning out results in real-time has multiple services running in tandem and is highly resource intensive. By deploying the system in the cloud, maintenance and load balancing of the system can be handled efficiently. It will also give the user more time to focus on application development. For the purpose of fraud detection, the active components, for example, include:

  • ActiveMQ
  • Web services
  • PostgreSQL

This approach combines the strengths and synergies of both cloud computing and machine learning technologies, providing a small company or even a startup that is unlikely to have specialized staff and necessary infrastructure for what is a computationally intensive approach, the ability to build a system that make decisions based on historical transactions.

Agent Paradigm
As multiple algorithms are to be run on the same data, a real-time agent paradigm is chosen to run these algorithms. An agent is an autonomous entity that may expect inputs and send outputs after performing a set of instructions. In a real-time system, these agents are wired together with directed connections to form an agency. An agent typically has two behaviors, cyclic and triggered. Cyclic agents, as the name suggests, run continuously in a loop and do not need any input. These are usually the first agents in an agency and are used for streaming data to the agency by connecting to an external real-time data source. A triggered agent runs every time it receives a message from a cyclic agent or another triggered agent. Once it consumes one message, it waits for the next message to arrive.

Figure 1: A simple agency with two agents

In Figure 1, Agent 1 is a cyclic agent while Agent 2 is a triggered agent. Agent 1 finishes its computation and sends a message to Agent 2, which uses the message as an input for further computation.

Feature Selection and Data Treatment
The dataset used for demonstrating fraud detection agency has 250 variables (features) pertaining to the demographic and financial history of the customers. To reduce the number of features, a Random Forest run was conducted on the dataset to obtain variable importance. Next, the top 30 variables were selected based on the variable importance. This reduced dataset was used for running a list of classification algorithms.

Algorithms for Fraud Detection
The fraud detection problem is a binary classification problem for which we have chosen three different algorithms to classify the input data into fraud (1) and not fraud (0). Each algorithm is configured as a triggered agent for our real-time system.

Logistic Regression
This is a probabilistic classification model where the dependent variable (the variable to be predicted) is a binary variable or a categorical variable. In case of binary dependent variables favorable outcomes are represented as 1 and non-favorable outcomes are represented as 0. Logistic regression models the probability of the dependent variable taking the value 0 or 1.

For the fraud detection problem, the dependent variable "bad" is modelled to give probabilities to each customer of being fraud or not. The equation takes multiple variables as input and returns a value between 0 & 1 which is the probability of "bad" being 0. If this value is greater than 0.7, then that customer is classified as not fraud.

Self-Organizing Maps (SOM)
This is an artificial neural network that uses unsupervised learning to represent the data in lower (typically two dimensions) dimensions. This representation of the input data in lower dimensions is called a map. Like most artificial neural networks, SOMs operate in two modes: training and mapping. "Training" builds the map using input examples, while "mapping" automatically classifies a new input vector.

For the fraud detection problem, the input space which is a fifty dimensional space is mapped to a two dimensional lattice of nodes. The training is done using data from the recent past and the new data is mapped using the trained model, which puts it either in the "fraud" cluster or "not - fraud" cluster.

Figure 2: x is an in-put vector in higher dimension, discretized in 2D using wij as the weight matrix
Image Source: http://www.lohninger.com/helpcsuite/kohonen_network_-_background_information.htm

Support Vector Machines (SVM)
This is a supervised learning technique used generally for classifying data. It needs a training dataset where the data is already classified into the required categories. It creates a hyperplane or set of hyperplanes that can be used for classification. The hyperplane is chosen such that it separates the different classes and the margin between the samples in the training set is widest.

For the fraud detection problem, SVM classifies the data points into two classes. The hyperplane is chosen by training the model over the past data. Using the variable "bad", the clusters are labeled as "0" (fraud) and "1" (not fraud). The new data points are classified using the hyperplane obtained while training.

Figure 3: Of the three hyperplanes which segment the data, H2 is the hyperplane which classifies the data accurately

Image Source: http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png

Fraud Detection Agency
A four-tier agency is created to build a workflow process for fraud detection.

Streamer Agent (Tier 1): This agent streams data in real-time to agents in Tier 2. It is the first agent in the agency and its behavior is cyclic. It connects to a real-time data source, pre-processes the data and sends it to the agents in the next layer.

Algorithm Agents (Tier 2): This tier has multiple agents running an ensemble of algorithms with one agent per algorithm. Each agent receives the message from the streamer agent and uses a pre-trained (trained on historical data) model for scoring.

Collator Agent (Tier 3): This agent receives scores from agents in Tier 2 and generates a single score by aggregating the scores. It then converts the score into an appropriate JSON format and sends it to an UI agent for consumption.

User Interface Agent (Tier 4): This agent pushes the messages it receives to a socket server. Any external socket client can be used to consume these messages.

Figure 4: The Fraud detection agency with agents in each layer. The final agent is mapped to a port to which a socket client can connect

Results and Model Validation
The models were trained on 70% of the data and the remaining 30% of the data was streamed to the above agency simulating a real-time data source.

Under-sample: The ratio of number of 0s to the number of 1s in the original dataset for the variable "bad" is 20:1. This would lead to biasing the models towards 0. To overcome this, we sample the training dataset by under-sampling the number of 0s to maintain the ration at 10:1.

The final output of the agency is the classification of the input as fraudulent or not. Since the value for the variable "bad" is already known for this data, it helps us gauge the accuracy of the aggregated model.

Figure 5: Accuracy for detecting fraud ("bad"=1) for different sampling ratio between no.of 0s and no. of 1s in the training dataset

Conclusion
Fraud detection can be improved by running an ensemble of algorithms in parallel and aggregating the predictions in real-time. This entire end-to-end application was designed and deployed in three working days. This shows the power of a system that enables easy deployment of real-time analytics applications. The work flow becomes inherently parallel as these agents run as separate processes communicating with each other. Deploying this in the cloud makes it horizontally scalable owing to effective load balancing and hardware maintenance. It also provides higher data security and makes the system fault tolerant by making processes mobile. This combination of a real-time application development system and a cloud-based computing enables even non-technical teams to rapidly deploy applications.

References

  • Gravic Inc, "The Evolution of Real-Time Business Intelligence", "http://www.gravic.com/shadowbase/pdf/white-papers/Shadowbase-for-Real-Time-Business-Intelligence.pdf"
  • Bernhard Schlkopf, Alexander J. Smola ( 2002), "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning)", MIT Press​
  • Christopher Burges (1998), "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Kluwer Publishers
  • Kohonen, T. (Sep 1990), "The self-organizing map", Proceedings of IEEE
  • Samuel Kaski (1997), "Data Exploration Using Self-Organizing Maps", ACTA POLYTECHNICA SCANDINAVICA: MATHEMATICS, COMPUTING AND MANAGEMENT IN ENGINEERING SERIES NO. 82,
  • Rokach, L. (2010). "Ensemble based classifiers". Artificial Intelligence Review
  • Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, "Variable Selection using Random Forests", http://robin.genuer.fr/genuer-poggi-tuleau.varselect-rf.preprint.pdf

More Stories By Roger Barga

Roger Barga, PhD, is Group Program Manager for the CloudML team at Microsoft Corporation where his team is building machine learning as a service on the cloud. He is also a lecturer in the Data Science program at the University of Washington. Roger joined Microsoft in 1997 as a Researcher in the Database Group of Microsoft Research (MSR), where he was involved in a number of systems research projects and product incubation efforts, before joining the Cloud and Enterprise Division of Microsoft in 2011.

More Stories By Avinash Joshi

Avinash Joshi is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that works on generating insights from real-time data streams in financial markets. Avinash joined this team in 2011 and has interests ranging from marketing mix modeling to algorithmic trading.

More Stories By Pravin Venugopal

Pravin Venugopal is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that is developing a low latency platform for algorithmic trading. Pravin received his Masters degree in Computer Science and has been a part of Mu Sigma since 2012. His interests include analyzing real-time financial data streams and algorithmic trading.

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
SYS-CON Events announced today the Docker Meets Kubernetes – Intro into the Kubernetes World, being held June 9, 2016, in conjunction with 18th Cloud Expo | @ThingsExpo, at the Javits Center in New York, NY. Register for 'Docker Meets Kubernetes Workshop' Here! This workshop led by Sebastian Scheele, co-founder of Loodse, introduces participants to Kubernetes (container orchestration). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, participants learn ...
Agile teams report the lowest rate of measuring non-functional requirements. What does this mean for the evolution of quality in this era of Continuous Everything? To explore how the rise of SDLC acceleration trends such as Agile, DevOps, and Continuous Delivery are impacting software quality, Parasoft conducted a survey about measuring and monitoring non-functional requirements (NFRs). Here's a glimpse at what we discovered and what it means for the evolution of quality in this era of Continuo...
Join us at Cloud Expo | @ThingsExpo 2016 – June 7-9 at the Javits Center in New York City and November 1-3 at the Santa Clara Convention Center in Santa Clara, CA – and deliver your unique message in a way that is striking and unforgettable by taking advantage of SYS-CON's unmatched high-impact, result-driven event / media packages.
SYS-CON Events announced today that BMC Software has been named "Siver Sponsor" of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. BMC is a global leader in innovative software solutions that help businesses transform into digital enterprises for the ultimate competitive advantage. BMC Digital Enterprise Management is a set of innovative IT solutions designed to make digital business fast, seamless, and optimized from mainframe to mo...
In the rush to compete in the digital age, a successful digital transformation is essential, but many organizations are setting themselves up for failure. There’s a common misconception that the process is just about technology, but it’s not. It’s about your business. It shouldn’t be treated as an isolated IT project; it should be driven by business needs with the committed involvement of a range of stakeholders.
SoftLayer operates a global cloud infrastructure platform built for Internet scale. With a global footprint of data centers and network points of presence, SoftLayer provides infrastructure as a service to leading-edge customers ranging from Web startups to global enterprises. SoftLayer's modular architecture, full-featured API, and sophisticated automation provide unparalleled performance and control. Its flexible unified platform seamlessly spans physical and virtual devices linked via a world...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
When I talk about driving innovation with self-organizing teams, I emphasize that such self-organization includes expecting the participants to organize their own teams, give themselves their own goals, and determine for themselves how to measure their success. In contrast, the definition of skunkworks points out that members of such teams are “usually specially selected.” Good thing he added the word usually – because specially selecting such teams throws a wrench in the entire works, limiting...
Automation is a critical component of DevOps and Continuous Delivery. This morning on #c9d9 we discussed CD Automation and how you can apply Automation to accelerate release cycles, improve quality, safety and governance? What is the difference between Automation and Orchestration? Where should you begin your journey to introduce both?
SYS-CON Events announced today TechTarget has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. TechTarget is the Web’s leading destination for serious technology buyers researching and making enterprise technology decisions. Its extensive global networ...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
Many banks and financial institutions are experimenting with containers in development environments, but when will they move into production? Containers are seen as the key to achieving the ultimate in information technology flexibility and agility. Containers work on both public and private clouds, and make it easy to build and deploy applications. The challenge for regulated industries is the cost and complexity of container security compliance. VM security compliance is already challenging, ...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 18th International CloudExpo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, New York, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
Application development and delivery methods have undergone radical changes in recent years to improve scalability and resiliency. Container images are the new build and deployment artifacts that are used to ship and run software. While startups have long been comfortable experimenting with and embracing new technologies, even large enterprises are now re-architecting their software systems so that they can benefit from container-enabled micro services architectures. With the launch of DC/OS, w...
You might already know them from theagileadmin.com, but let me introduce you to two of the leading minds in the Rugged DevOps movement: James Wickett and Ernest Mueller. Both James and Ernest are active leaders in the DevOps space, in addition to helping organize events such as DevOpsDays Austinand LASCON. Our conversation covered a lot of bases from the founding of Rugged DevOps to aligning organizational silos to lessons learned from W. Edwards Demings.
Just last week a senior Hybris consultant shared the story of a customer engagement on which he was working. This customer had problems, serious problems. We’re talking about response times far beyond the most liberal acceptable standard. They were unable to solve the issue in their eCommerce platform – specifically Hybris. Although the eCommerce project was delivered by a system integrator / implementation partner, the vendor still gets involved when things go really wrong. After all, the vendo...
SYS-CON Events announced today that EastBanc Technologies will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. EastBanc Technologies has been working at the frontier of technology since 1999. Today, the firm provides full-lifecycle software development delivering flexible technology solutions that seamlessly integrate with existing systems – whether on premise or cloud. EastBanc Technologies partners with p...
SYS-CON Events announced today that AppNeta, the leader in performance insight for business-critical web applications, will exhibit and present at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. AppNeta is the only application performance monitoring (APM) company to provide solutions for all applications – applications you develop internally, business-critical SaaS applications you use and the networks that deli...
While there has been much ado about interoperability, there are still no real solutions, same as last year and the year before that. The large EHR vendors who continue to dominate the market still maintain that interoperability is all but solved, still can't connect EHRs across the continuum causing frustration by providers and a disservice to patients. The ONC pays lip service to the problem, but that is about it. It is time for the healthcare industry to consider alternatives like middleware w...