Click here to close now.



Welcome!

Microservices Expo Authors: Liz McMillan, Elizabeth White, Carmen Gonzalez, Pat Romanski, Yeshim Deniz

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, Cloud Security

@CloudExpo: Article

Real-Time Fraud Detection in the Cloud

Using machine learning agent ensembles

This article explores how to detect fraud among online banking customers in real-time by running an ensemble of statistical and machine learning algorithms on a dataset of customer transactions and demographic data. The algorithms, namely Logistic Regression, Self-Organizing Maps and Support Vector Machines, are operationalized using a multi-agent framework for real-time data analysis. This article also explores the cloud environment for real-time analytics by deploying the agent framework in a cloud environment that meets computational demands by letting users' provision virtual machines within managed data centers, freeing them from the worry of acquiring and setting up new hardware and networks.

Real-time decision making is becoming increasingly valuable with the advancement of data collection and analytics techniques. Due to the increase in the speed of processing, the classical data warehousing model is moving toward a real-time model. A platform that enables the rapid development and deployment of applications, reducing the lag between data acquisition and actionable insight has become of paramount importance in the corporate world. Such a system can be used for the classic case of deriving information from data collected in the past and also to have a real-time engine that reacts to events as they occur. Some examples of such applications include:

  • A product company can get real-time feedback for their new releases using data from social media
  • Algorithmic trading by reacting in real times to fluctuations in stock prices
  • Real-time recommendations for food and entertainment based on a customer's location
  • Traffic signal operations based on real-time information of volume of traffic
  • E-commerce websites can detect a customer transaction being authentic or fraudulent in real-time

A cloud-based ecosystem enables users to build an application that detects, in real-time, fraudulent customers based on their demographic information and financial history. Multiple algorithms are utilized to detect fraud and the output is aggregated to improve prediction accuracy.

The dataset used to demonstrate this application comprises of various customer demographic variables and financial information such as age, residential address, office address, income type, income frequency, bankruptcy filing status, etc. The dependent variable (the variable to be predicted) is called "bad", which is a binary variable taking the value 0 (for not fraud) or 1 (for fraud).

Using Cloud for Effective Usage of Resources
A system that allows the development of applications capable of churning out results in real-time has multiple services running in tandem and is highly resource intensive. By deploying the system in the cloud, maintenance and load balancing of the system can be handled efficiently. It will also give the user more time to focus on application development. For the purpose of fraud detection, the active components, for example, include:

  • ActiveMQ
  • Web services
  • PostgreSQL

This approach combines the strengths and synergies of both cloud computing and machine learning technologies, providing a small company or even a startup that is unlikely to have specialized staff and necessary infrastructure for what is a computationally intensive approach, the ability to build a system that make decisions based on historical transactions.

Agent Paradigm
As multiple algorithms are to be run on the same data, a real-time agent paradigm is chosen to run these algorithms. An agent is an autonomous entity that may expect inputs and send outputs after performing a set of instructions. In a real-time system, these agents are wired together with directed connections to form an agency. An agent typically has two behaviors, cyclic and triggered. Cyclic agents, as the name suggests, run continuously in a loop and do not need any input. These are usually the first agents in an agency and are used for streaming data to the agency by connecting to an external real-time data source. A triggered agent runs every time it receives a message from a cyclic agent or another triggered agent. Once it consumes one message, it waits for the next message to arrive.

Figure 1: A simple agency with two agents

In Figure 1, Agent 1 is a cyclic agent while Agent 2 is a triggered agent. Agent 1 finishes its computation and sends a message to Agent 2, which uses the message as an input for further computation.

Feature Selection and Data Treatment
The dataset used for demonstrating fraud detection agency has 250 variables (features) pertaining to the demographic and financial history of the customers. To reduce the number of features, a Random Forest run was conducted on the dataset to obtain variable importance. Next, the top 30 variables were selected based on the variable importance. This reduced dataset was used for running a list of classification algorithms.

Algorithms for Fraud Detection
The fraud detection problem is a binary classification problem for which we have chosen three different algorithms to classify the input data into fraud (1) and not fraud (0). Each algorithm is configured as a triggered agent for our real-time system.

Logistic Regression
This is a probabilistic classification model where the dependent variable (the variable to be predicted) is a binary variable or a categorical variable. In case of binary dependent variables favorable outcomes are represented as 1 and non-favorable outcomes are represented as 0. Logistic regression models the probability of the dependent variable taking the value 0 or 1.

For the fraud detection problem, the dependent variable "bad" is modelled to give probabilities to each customer of being fraud or not. The equation takes multiple variables as input and returns a value between 0 & 1 which is the probability of "bad" being 0. If this value is greater than 0.7, then that customer is classified as not fraud.

Self-Organizing Maps (SOM)
This is an artificial neural network that uses unsupervised learning to represent the data in lower (typically two dimensions) dimensions. This representation of the input data in lower dimensions is called a map. Like most artificial neural networks, SOMs operate in two modes: training and mapping. "Training" builds the map using input examples, while "mapping" automatically classifies a new input vector.

For the fraud detection problem, the input space which is a fifty dimensional space is mapped to a two dimensional lattice of nodes. The training is done using data from the recent past and the new data is mapped using the trained model, which puts it either in the "fraud" cluster or "not - fraud" cluster.

Figure 2: x is an in-put vector in higher dimension, discretized in 2D using wij as the weight matrix
Image Source: http://www.lohninger.com/helpcsuite/kohonen_network_-_background_information.htm

Support Vector Machines (SVM)
This is a supervised learning technique used generally for classifying data. It needs a training dataset where the data is already classified into the required categories. It creates a hyperplane or set of hyperplanes that can be used for classification. The hyperplane is chosen such that it separates the different classes and the margin between the samples in the training set is widest.

For the fraud detection problem, SVM classifies the data points into two classes. The hyperplane is chosen by training the model over the past data. Using the variable "bad", the clusters are labeled as "0" (fraud) and "1" (not fraud). The new data points are classified using the hyperplane obtained while training.

Figure 3: Of the three hyperplanes which segment the data, H2 is the hyperplane which classifies the data accurately

Image Source: http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png

Fraud Detection Agency
A four-tier agency is created to build a workflow process for fraud detection.

Streamer Agent (Tier 1): This agent streams data in real-time to agents in Tier 2. It is the first agent in the agency and its behavior is cyclic. It connects to a real-time data source, pre-processes the data and sends it to the agents in the next layer.

Algorithm Agents (Tier 2): This tier has multiple agents running an ensemble of algorithms with one agent per algorithm. Each agent receives the message from the streamer agent and uses a pre-trained (trained on historical data) model for scoring.

Collator Agent (Tier 3): This agent receives scores from agents in Tier 2 and generates a single score by aggregating the scores. It then converts the score into an appropriate JSON format and sends it to an UI agent for consumption.

User Interface Agent (Tier 4): This agent pushes the messages it receives to a socket server. Any external socket client can be used to consume these messages.

Figure 4: The Fraud detection agency with agents in each layer. The final agent is mapped to a port to which a socket client can connect

Results and Model Validation
The models were trained on 70% of the data and the remaining 30% of the data was streamed to the above agency simulating a real-time data source.

Under-sample: The ratio of number of 0s to the number of 1s in the original dataset for the variable "bad" is 20:1. This would lead to biasing the models towards 0. To overcome this, we sample the training dataset by under-sampling the number of 0s to maintain the ration at 10:1.

The final output of the agency is the classification of the input as fraudulent or not. Since the value for the variable "bad" is already known for this data, it helps us gauge the accuracy of the aggregated model.

Figure 5: Accuracy for detecting fraud ("bad"=1) for different sampling ratio between no.of 0s and no. of 1s in the training dataset

Conclusion
Fraud detection can be improved by running an ensemble of algorithms in parallel and aggregating the predictions in real-time. This entire end-to-end application was designed and deployed in three working days. This shows the power of a system that enables easy deployment of real-time analytics applications. The work flow becomes inherently parallel as these agents run as separate processes communicating with each other. Deploying this in the cloud makes it horizontally scalable owing to effective load balancing and hardware maintenance. It also provides higher data security and makes the system fault tolerant by making processes mobile. This combination of a real-time application development system and a cloud-based computing enables even non-technical teams to rapidly deploy applications.

References

  • Gravic Inc, "The Evolution of Real-Time Business Intelligence", "http://www.gravic.com/shadowbase/pdf/white-papers/Shadowbase-for-Real-Time-Business-Intelligence.pdf"
  • Bernhard Schlkopf, Alexander J. Smola ( 2002), "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning)", MIT Press​
  • Christopher Burges (1998), "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Kluwer Publishers
  • Kohonen, T. (Sep 1990), "The self-organizing map", Proceedings of IEEE
  • Samuel Kaski (1997), "Data Exploration Using Self-Organizing Maps", ACTA POLYTECHNICA SCANDINAVICA: MATHEMATICS, COMPUTING AND MANAGEMENT IN ENGINEERING SERIES NO. 82,
  • Rokach, L. (2010). "Ensemble based classifiers". Artificial Intelligence Review
  • Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, "Variable Selection using Random Forests", http://robin.genuer.fr/genuer-poggi-tuleau.varselect-rf.preprint.pdf

More Stories By Roger Barga

Roger Barga, PhD, is Group Program Manager for the CloudML team at Microsoft Corporation where his team is building machine learning as a service on the cloud. He is also a lecturer in the Data Science program at the University of Washington. Roger joined Microsoft in 1997 as a Researcher in the Database Group of Microsoft Research (MSR), where he was involved in a number of systems research projects and product incubation efforts, before joining the Cloud and Enterprise Division of Microsoft in 2011.

More Stories By Avinash Joshi

Avinash Joshi is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that works on generating insights from real-time data streams in financial markets. Avinash joined this team in 2011 and has interests ranging from marketing mix modeling to algorithmic trading.

More Stories By Pravin Venugopal

Pravin Venugopal is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that is developing a low latency platform for algorithmic trading. Pravin received his Masters degree in Computer Science and has been a part of Mu Sigma since 2012. His interests include analyzing real-time financial data streams and algorithmic trading.

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
Cloud Expo, Inc. has announced today that Andi Mann returns to 'DevOps at Cloud Expo 2016' as Conference Chair The @DevOpsSummit at Cloud Expo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited t...
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists discusse...
When people aren’t talking about VMs and containers, they’re talking about serverless architecture. Serverless is about no maintenance. It means you are not worried about low-level infrastructural and operational details. An event-driven serverless platform is a great use case for IoT. In his session at @ThingsExpo, Animesh Singh, an STSM and Lead for IBM Cloud Platform and Infrastructure, will detail how to build a distributed serverless, polyglot, microservices framework using open source tec...
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes ho...
Gartner is now treating algorithms like they are some kind of innovative addition to the modern digital discussion. Presumably the brilliant minds there have some novel insight into algorithms and, yes, the Algorithm Economy that CIOs should sit up and take notice of. Not only are algorithms nothing new, but much of what Gartner is saying about them is obvious. The bigger picture here is that software continues to improve, and enterprises are becoming increasingly software-driven, in part bec...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Val...
SYS-CON Events announced today that Men & Mice, the leading global provider of DNS, DHCP and IP address management overlay solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. The Men & Mice Suite overlay solution is already known for its powerful application in heterogeneous operating environments, enabling enterprises to scale without fuss. Building on a solid range of diverse platform support,...
Internet of @ThingsExpo, taking place June 7-9, 2016 at Javits Center, New York City and Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 18th International @CloudExpo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo New York Call for Papers is now open.
SYS-CON Events announced today that Catchpoint Systems, Inc., a provider of innovative web and infrastructure monitoring solutions, has been named “Silver Sponsor” of SYS-CON's DevOps Summit at 18th Cloud Expo New York, which will take place June 7-9, 2016, at the Javits Center in New York City, NY. Catchpoint is a leading Digital Performance Analytics company that provides unparalleled insight into customer-critical services to help consistently deliver an amazing customer experience. Designed...
@DevOpsSummit taking place June 7-9, 2016 at Javits Center, New York City, and Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 18th International @CloudExpo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world.
Cloud Expo, Inc. has announced today that Andi Mann returns to 'DevOps at Cloud Expo 2016' as Conference Chair The @DevOpsSummit at Cloud Expo will take place on June 7-9, 2016, at the Javits Center in New York City, New York. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the g...
Korean Broadcasting System (KBS) will feature the upcoming 18th Cloud Expo | @ThingsExpo in a New York news documentary about the "New IT for the Future." The documentary will cover how big companies are transmitting or adopting the new IT for the future and will be filmed on the expo floor between June 7-June 9, 2016, at the Javits Center in New York City, New York. KBS has long been a leader in the development of the broadcasting culture of Korea. As the key public service broadcaster of Korea...
SYS-CON Events announced today that Addteq will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Addteq is one of the top 10 Platinum Atlassian Experts who specialize in DevOps, custom and continuous integration, automation, plugin development, and consulting for midsize and global firms. Addteq firmly believes that automation is essential for successful software releases. Addteq centers its products a...
In the rush to compete in the digital age, a successful digital transformation is essential, but many organizations are setting themselves up for failure. There’s a common misconception that the process is just about technology, but it’s not. It’s about your business. It shouldn’t be treated as an isolated IT project; it should be driven by business needs with the committed involvement of a range of stakeholders.
SYS-CON Events announced today that FalconStor Software® Inc., a 15-year innovator of software-defined storage solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. FalconStor Software®, Inc. (NASDAQ: FALC) is a leading software-defined storage company offering a converged, hardware-agnostic, software-defined storage and data services platform. Its flagship solution FreeStor®, utilizes a horizonta...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York and Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty ...
SYS-CON Events announced today that Column Technologies will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Established in 1998, Column Technologies is a global technology solutions provider with over 400 employees, headquartered in the United States with offices in Canada, India, and the United Kingdom. Column Technologies provides “Best of Breed” technology solutions that automate the key DevOps principal...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.