Click here to close now.




















Welcome!

Microservices Expo Authors: Liz McMillan, Trevor Parsons, Lori MacVittie, Roger Strukhoff, Tom Lounibos

Related Topics: @BigDataExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, @CloudExpo

@BigDataExpo: Blog Post

In-Memory Computing By @GridGain | @CloudExpo [#BigData]

The best way to clear the air around IMC is to start with a simple explanation of what, in fact, in-memory computing is

The Facts and Fiction of In-Memory Computing

In the last year, conversations about In-Memory Computing (IMC) have become more and more prevalent in enterprise IT circles, especially with organizations feeling the pressure to process massive quantities of data at the speed that is now being demanded by the Internet. The hype around IMC is justified: tasks that once took hours to execute are streamlined down to seconds by moving the computation and data from disk, directly to RAM. Through this simple adjustment, analytics are happening in real-time, and applications (as well as the development of applications) are working at-pace with this new standard of technology and speed.

Despite becoming both more cost-effective and accepted within enterprise computing, there are still a small handful of falsehoods that confuse even the most technical of individuals in enterprise IT.

Myth: In-memory computing is about databases, so this isn't really relevant to my business.

The best way to clear the air around IMC is to start with a simple explanation of what, in fact, in-memory computing is. While many assume that because we are talking about RAM, we are having a conversation about databases and storage, but this is not the case.

IMC, at its most basic level, is using a middleware software that allows one to store data in RAM - across a broad cluster of computers - and do any and all processing where it resides (in the memory). With traditional methods, data processing is often confined to spinning disks.

By comparison, in-memory computing speeds up this process by roughly 5,000 times. Now you can see that we're not talking about storage only - instead active, fluid data and computing.

Which brings me to another, more tangible point about computing efficiency. By incorporating in-memory, a handful of processes are streamlined in order to save time, resources, and money.

To start, in-memory requires much less hardware; the result - significantly decreased capital, operational and infrastructure overhead.

Moreover, IT departments can also significantly extend the life of existing hardware and software through the increased performance that is inherent with IMC - thus amplifying the ROI on the machines that have already been purchased.

Surprisingly, in-memory computing is not a new phenomenon. Since the inception of RAM, IMC has been viewed as reliable accelerant for high-performance computing, bringing us to the next crucial misconception about this technology.

Myth: In-memory computing is expensive, therefore not practical for my operation.

There is a reason that this is one of the most common misunderstandings about IMC, because there was a point in time where the cost of memory was once quite high. That being said, the cost of RAM has been dropping consistently, at a rate of about 30% - for the last 5 years.

Today, the price of a 1 Terabyte RAM cluster can go for anywhere between $20 and $40 thousand - including all of the CPUs, networking, etc. A few years from now that same setup will likely be available for half that price.

Regardless of the future price of RAM, which based upon current projections will likely continue to fall, the current economics have already placed this technology well within the reaches of the enterprise computing budgets that require this level of scale.

Myth: My needs are already being met by Flash.

There are three different reasons why this mentality is held by IT folks, each of which are highly misinformed. I'll start with the most common, which is the idea that your business doesn't need the Lambourgini-esque super-computing power of IMC.

The hard yet obvious reality is that if your business is in any way data-driven, you likely cannot survive without speed and agility in this department. As time goes on, the amount of data that businesses accumulate compounds with new streams and variances. This is a sink-or-swim reality.

Another myth commonly used to dispel IMC is that if businesses are able to just effectively mount RAM disk, they will get in-memory processing. Unfortunately, it's not that easy. As mentioned earlier, IMC works through middleware to effectively unlock its power.

Finally, there's the notion that one can just replace their HDDs with SSDs in order to get this super-charged performance. For SSDs - in certain situations - the performance gain that you can pull from flash storage in lieu of spinning disk is enough.

However, speed matters - and is rapidly becoming more of a requirement every day. At this point, it's like comparing apples to oranges with speed improvements of 10 to 100x over SSDs.

Myth: Memory is not durable enough to be truly sustainable.

This is another notion that for whatever reason has been both widely perpetuated - and is entirely false.

The fact is - almost all in-memory computing middleware (apart from very simplistic ones) offer one or multiple strategies for in-memory backups, durable storage backups, disk-based swap space overflow, etc.

More sophisticated vendors provide a comprehensive tiered storage approach where users can decide what portion of the overall data set is stored in RAM, local disk swap space or RDBMS/HDFS - where each tier can store progressively more data but with progressively longer latencies.

Yet another source of confusion is the difference between operational datasets and historical datasets. In-memory computing is not aimed at replacing enterprise data warehouse (EDW), backup or offline storage services - like Hadoop, for example. The goal of IMC is to improve the operational datasets that require mixed OLTP and OLAP processing and in most cases are less than 10TB in size. That is to say, in-memory computing is not "all or nothing" - and does not require that every aspect of data be housed in memory.

The in-memory computing revolution is by no means intended to obliterate disks from the enterprise. For now, the disk still serves a well-defined role for offline/backup use cases - tasks that are not the focus of IMC.

Myth: In-memory is inaccessible to my business because so few developers actually know how to use it.

Yes indeed, In-memory computing is a highly complex technology, that for now, only a few vendors have even been able to successfully develop offerings for. However, like much of high-technology, in-memory computing has entered the world of open source - bringing its capabilities and power to the fingertips of developers around the world.

Currently, with GridGain, developers have the ability to get their hands on IMC with a simple download at http://gridgain.org/.

In-memory computing is already being tapped across a broad range of functions and industries including (but not limited to) financial trading systems, online game, bioinformatics, hyper-local advertising, cognitive computing, and geospatial analysis.

By raising awareness, and bringing the capabilities of IMC to more developers and organizations - industries around the globe are poised to experience entirely new standards of speed, computing, and performance.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
"We got started as search consultants. On the services side of the business we have help organizations save time and save money when they hit issues that everyone more or less hits when their data grows," noted Otis Gospodnetić, Founder of Sematext, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Auto-scaling environments, micro-service architectures and globally-distributed teams are just three common examples of why organizations today need automation and interoperability more than ever. But is interoperability something we simply start doing, or does it require a reexamination of our processes? And can we really improve our processes without first making interoperability a requirement for how we choose our tools?
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
How do you securely enable access to your applications in AWS without exposing any attack surfaces? The answer is usually very complicated because application environments morph over time in response to growing requirements from your employee base, your partners and your customers. In his session at @DevOpsSummit, Haseeb Budhani, CEO and Co-founder of Soha, shared five common approaches that DevOps teams follow to secure access to applications deployed in AWS, Azure, etc., and the friction an...
Digital Transformation is the ultimate goal of cloud computing and related initiatives. The phrase is certainly not a precise one, and as subject to hand-waving and distortion as any high-falutin' terminology in the world of information technology. Yet it is an excellent choice of words to describe what enterprise IT—and by extension, organizations in general—should be working to achieve. Digital Transformation means: handling all the data types being found and created in the organizat...
This week, I joined SOASTA as Senior Vice President of Performance Analytics. Given my background in cloud computing and distributed systems operations — you may have read my blogs on CNET or GigaOm — this may surprise you, but I want to explain why this is the perfect time to take on this opportunity with this team. In fact, that’s probably the best way to break this down. To explain why I’d leave the world of infrastructure and code for the world of data and analytics, let’s explore the timing...
The Software Defined Data Center (SDDC), which enables organizations to seamlessly run in a hybrid cloud model (public + private cloud), is here to stay. IDC estimates that the software-defined networking market will be valued at $3.7 billion by 2016. Security is a key component and benefit of the SDDC, and offers an opportunity to build security 'from the ground up' and weave it into the environment from day one. In his session at 16th Cloud Expo, Reuven Harrison, CTO and Co-Founder of Tufin,...
You often hear the two titles of "DevOps" and "Immutable Infrastructure" used independently. In his session at DevOps Summit, John Willis, Technical Evangelist for Docker, covered the union between the two topics and why this is important. He provided an overview of Immutable Infrastructure then showed how an Immutable Continuous Delivery pipeline can be applied as a best practice for "DevOps." He ended the session with some interesting case study examples.
JavaScript is primarily a client-based dynamic scripting language most commonly used within web browsers as client-side scripts to interact with the user, browser, and communicate asynchronously to servers. If you have been part of any web-based development, odds are you have worked with JavaScript in one form or another. In this article, I'll focus on the aspects of JavaScript that are relevant within the Node.js environment.
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
Microservices are hot. And for good reason. To compete in today’s fast-moving application economy, it makes sense to break large, monolithic applications down into discrete functional units. Such an approach makes it easier to update and add functionalities (text-messaging a customer, calculating sales tax for a specific geography, etc.) and get those updates / adds into production fast. In fact, some would argue that microservices are a prerequisite for true continuous delivery. But is it too...
Summer is finally here and it’s time for a DevOps summer vacation. From San Francisco to New York City, our top summer conferences list is going to continuously deliver you to the summer destinations of your dreams. These DevOps parties are hitting all the hottest summer trends with Microservices, Agile, Continuous Delivery, DevSecOps, and even Continuous Testing. Move over Kanye. These are the top 5 Summer DevOps Conferences of 2015.
Countless business models have spawned from the IaaS industry. Resell Web hosting, blogs, public cloud, and on and on. With the overwhelming amount of tools available to us, it's sometimes easy to overlook that many of them are just new skins of resources we've had for a long time. In his General Session at 16th Cloud Expo, Phil Jackson, Lead Technology Evangelist at SoftLayer, broke down what we've got to work with and discuss the benefits and pitfalls to discover how we can best use them to d...
Puppet Labs has published their annual State of DevOps report and it is loaded with interesting information as always. Last year’s report brought home the point that DevOps was becoming widely accepted in the enterprise. This year’s report further validates that point and provides us with some interesting insights from surveying a wide variety of companies in different phases of their DevOps journey.
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at DevOps Summit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
What we really mean to ask is whether microservices architecture is SOA done right. But then, of course, we’d have to figure out what microservices architecture was. And if you think defining SOA is difficult, pinning down microservices architecture is unquestionably frying pan into fire time. Given my years at ZapThink, fighting to help architects understand what Service-Oriented Architecture really was and how to get it right, it’s no surprise that many people ask me this question.
"ProfitBricks was founded in 2010 and we are the painless cloud - and we are also the Infrastructure as a Service 2.0 company," noted Achim Weiss, Chief Executive Officer and Co-Founder of ProfitBricks, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
One of the ways to increase scalability of services – and applications – is to go “stateless.” The reasons for this are many, but in general by eliminating the mapping between a single client and a single app or service instance you eliminate the need for resources to manage state in the app (overhead) and improve the distributability (I can make up words if I want) of requests across a pool of instances. The latter occurs because sessions don’t need to hang out and consume resources that could ...
Approved this February by the Internet Engineering Task Force (IETF), HTTP/2 is the first major update to HTTP since 1999, when HTTP/1.1 was standardized. Designed with performance in mind, one of the biggest goals of HTTP/2 implementation is to decrease latency while maintaining a high-level compatibility with HTTP/1.1. Though not all testing activities will be impacted by the new protocol, it's important for testers to be aware of any changes moving forward.