Welcome!

Microservices Expo Authors: AppDynamics Blog, Pat Romanski, Elizabeth White, Liz McMillan, APM Blog

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Linux Containers, SDN Journal

Containers Expo Blog: Blog Post

In-Memory Computing: In Plain English

Explaining in-memory computing and defining what in-memory computing is really about

After five days (and eleven meetings) with new customers in Europe, Russia, and the Middle East, I think time is right for another refinement of in-memory computing's definition. To me, it is clear that our industry is lagging when it comes to explaining in-memory computing to potential customers and defining what in-memory computing is really about. We struggle to come up with a simple, understandable definition of what in-memory computing is all about, what problems it solves, and what uses are a good fit for the technology.

In-Memory Computing: What Is It?
In-memory computing means using a type of middleware software that allows one to store data in RAM, across a cluster of computers, and process it in parallel. Consider operational datasets typically stored in a centralized database which you can now store in "connected" RAM across multiple computers. RAM, roughly, is 5,000 times faster than traditional spinning disk. Add to the mix native support for parallel processing, and things get very fast. Really, really, fast.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing. While in-memory data storage is expected of in-memory technology, the parallelization and distribution of data processing, which is an integral part of in-memory computing, calls for an explanation.

Parallel distributed processing capabilities of in-memory computing are... a technical necessity. Consider this: a single modern computer can hardly have enough RAM to hold a significant dataset. In fact, a typical x86 server today (mid-2014) would have somewhere between 32GB to 256GB of RAM. Although this could be a significant amount of memory for a single computer, that's not enough to store many of today's operational datasets that easily measure in terabytes.

To overcome this problem in-memory computing software is designed from the ground up to store data in a distributed fashion, where the entire dataset is divided into individual computers' memory, each storing only a portion of the overall dataset. Once data is partitioned - parallel distributed processing becomes a technical necessity simply because data is stored this way.

And while it makes the development of in-memory computing software challenging (literally fewer than 10 companies in the world have mastered this type of software development) - end users of in-memory computing seeking dramatic performance and scalability increas benefit greatly from this technology.

In-Memory Computing: What Is It Good For?
Let's get this out of the way first: if one wants a 2-3x performance or scalability improvements - flash storage (SSD, Flash on PCI-E, Memory Channel Storage, etc.) can do the job. It is relatively cheap and can provide that kind of modest performance boost.

To see, however, what a difference in-memory computing can make, consider this real-live example...

Last year GridGain won an open tender for one of the largest banks in the world. The tender was for a risk analytics system to provide real-time analysis of risk for the bank's trading desk (common use case for in-memory computing in the financial industry). In this tender GridGain software demonstrated one billion (!) business transactions per second on 10 commodity servers with the total of 1TB of RAM. The total cost of these 10 commodity servers? Less than $25K.

Now, read the previous paragraph again: one billion financial transactions per second on $25K worth of hardware. That is the in-memory computing difference - not just 2-3x times faster; more than 100x faster than theoretically possible even with the most expensive flash-based storage available on today's market (forget about spinning disks). And 1TB of flash-based storage alone would cost 10x of entire hardware setup mentioned.

Importantly, that performance translates directly into the clear business value:

  • you can use less hardware to support the required performance and throughput SLAs, get better data center consolidation, and significantly reduce capital costs, as well as operational and infrastructure overhead, and
  • you can also significantly extend the lifetime of your existing hardware and software by getting increased performance and improve its ROI by using what you already have longer and making it go faster.

And that's what makes in-memory computing such a hot topic these days: the demand to process ever growing datasets in real-time can now be fulfilled with the extraordinary performance and scale of in-memory computing, with economics so compelling that the business case becomes clear and obvious.

In-Memory Computing: What Are the Best Use Cases?
I can only speak for GridGain here but our user base is big enough to be statistically significant. GridGain has production customers in a wide variety of industries:

  • Investment banking
  • Insurance claim processing & modeling
  • Real-time ad platforms
  • Real-time sentiment analysis
  • Merchant platform for online games
  • Hyper-local advertising
  • Geospatial/GIS processing
  • Medical imaging processing
  • Natural language processing & cognitive computing
  • Real-time machine learning
  • Complex event processing of streaming sensor data

And we're also seeing our solutions deployed for more mundane use cases, like speeding the response time of a student registration system from 45 seconds to under a half-second.

By looking at this list it becomes pretty obvious that the best use cases are defined not by specific industry but by the underlying technical need, i.e. the need to get the ultimate best and uncompromised performance and scalability for a given task.

In many of these real-life deployments in-memory computing was an enabling technology, the technology that made these particular systems possible to consider and ultimately possible to implement.

The bottom line is that in-memory computing is beginning to unleash a wave of innovation that's not built on Big Data per se, but on Big Ideas, ideas that are suddenly attainable. It's blowing up the costly economics of traditional computing that frankly can't keep up with either the growth of information or the scale of demand.

As the Internet expands from connecting people to connecting things, devices like refrigerators, thermostats, light bulbs, jet engines and even heart rate monitors are producing streams of information that will not just inform us, but also protect us, make us healthier and help us live richer lives. We'll begin to enjoy conveniences and experiences that only existed in science fiction novels. The technology to support this transformation exists today - and it's called in-memory computing.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@MicroservicesExpo Stories
With the rise of Docker, Kubernetes, and other container technologies, the growth of microservices has skyrocketed among dev teams looking to innovate on a faster release cycle. This has enabled teams to finally realize their DevOps goals to ship and iterate quickly in a continuous delivery model. Why containers are growing in popularity is no surprise — they’re extremely easy to spin up or down, but come with an unforeseen issue. However, without the right foresight, DevOps and IT teams may lo...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm ...
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, will compare the Jevons Paradox to modern-day enterprise IT, e...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Tintri VM-aware storage is the simplest for virtualized applications and cloud. Organizations including GE, Toyota, United Healthcare, NASA and 6 of the Fortune 15 have said “No to LUNs.” With Tintri they mana...
Digitization is driving a fundamental change in society that is transforming the way businesses work with their customers, their supply chains and their people. Digital transformation leverages DevOps best practices, such as Agile Parallel Development, Continuous Delivery and Agile Operations to capitalize on opportunities and create competitive differentiation in the application economy. However, information security has been notably absent from the DevOps movement. Speed doesn’t have to negat...
Your business relies on your applications and your employees to stay in business. Whether you develop apps or manage business critical apps that help fuel your business, what happens when users experience sluggish performance? You and all technical teams across the organization – application, network, operations, among others, as well as, those outside the organization, like ISPs and third-party providers – are called in to solve the problem.
In his general session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed cloud as a ‘better data center’ and how it adds new capacity (faster) and improves application availability (redundancy). The cloud is a ‘Dynamic Tool for Dynamic Apps’ and resource allocation is an integral part of your application architecture, so use only the resources you need and allocate /de-allocate resources on the fly.
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
As applications are promoted from the development environment to the CI or the QA environment and then into the production environment, it is very common for the configuration settings to be changed as the code is promoted. For example, the settings for the database connection pools are typically lower in development environment than the QA/Load Testing environment. The primary reason for the existence of the configuration setting differences is to enhance application performance. However, occas...
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
While DevOps promises a better and tighter integration among an organization’s development and operation teams and transforms an application life cycle into a continual deployment, Chef and Azure together provides a speedy, cost-effective and highly scalable vehicle for realizing the business values of this transformation. In his session at @DevOpsSummit at 19th Cloud Expo, Yung Chou, a Technology Evangelist at Microsoft, will present a unique opportunity to witness how Chef and Azure work tog...
When scaling agile / Scrum, we invariable run into the alignment vs autonomy problem. In short: you cannot have autonomous self directing teams if they have no clue in what direction they should go, or even shorter: Alignment breeds autonomy. But how do we create alignment? and what tools can we use to quickly evaluate if what we want to do is part of the mission or better left out? Niel Nickolaisen created the Purpose Alignment model and I use it with innovation labs in large enterprises to de...
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addres...
SYS-CON Events announced today that Numerex Corp, a leading provider of managed enterprise solutions enabling the Internet of Things (IoT), will exhibit at the 19th International Cloud Expo | @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Numerex Corp. (NASDAQ:NMRX) is a leading provider of managed enterprise solutions enabling the Internet of Things (IoT). The Company's solutions produce new revenue streams or create operating...
Analysis of 25,000 applications reveals 6.8% of packages/components used included known defects. Organizations standardizing on components between 2 - 3 years of age can decrease defect rates substantially. Open source and third-party packages/components live at the heart of high velocity software development organizations. Today, an average of 106 packages/components comprise 80 - 90% of a modern application, yet few organizations have visibility into what components are used where.
Throughout history, various leaders have risen up and tried to unify the world by conquest. Fortunately, none of their plans have succeeded. The world goes on just fine with each country ruling itself; no single ruler is necessary. That’s how it is with the container platform ecosystem, as well. There’s no need for one all-powerful, all-encompassing container platform. Think about any other technology sector out there – there are always multiple solutions in every space. The same goes for conta...
Let's recap what we learned from the previous chapters in the series: episode 1 and episode 2. We learned that a good rollback mechanism cannot be designed without having an intimate knowledge of the application architecture, the nature of your components and their dependencies. Now that we know what we have to restore and in which order, the question is how?