Welcome!

Microservices Expo Authors: Liz McMillan, Elizabeth White, Pat Romanski, Mehdi Daoudi, Flint Brenton

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Linux Containers, SDN Journal

Containers Expo Blog: Blog Post

In-Memory Computing: In Plain English

Explaining in-memory computing and defining what in-memory computing is really about

After five days (and eleven meetings) with new customers in Europe, Russia, and the Middle East, I think time is right for another refinement of in-memory computing's definition. To me, it is clear that our industry is lagging when it comes to explaining in-memory computing to potential customers and defining what in-memory computing is really about. We struggle to come up with a simple, understandable definition of what in-memory computing is all about, what problems it solves, and what uses are a good fit for the technology.

In-Memory Computing: What Is It?
In-memory computing means using a type of middleware software that allows one to store data in RAM, across a cluster of computers, and process it in parallel. Consider operational datasets typically stored in a centralized database which you can now store in "connected" RAM across multiple computers. RAM, roughly, is 5,000 times faster than traditional spinning disk. Add to the mix native support for parallel processing, and things get very fast. Really, really, fast.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing. While in-memory data storage is expected of in-memory technology, the parallelization and distribution of data processing, which is an integral part of in-memory computing, calls for an explanation.

Parallel distributed processing capabilities of in-memory computing are... a technical necessity. Consider this: a single modern computer can hardly have enough RAM to hold a significant dataset. In fact, a typical x86 server today (mid-2014) would have somewhere between 32GB to 256GB of RAM. Although this could be a significant amount of memory for a single computer, that's not enough to store many of today's operational datasets that easily measure in terabytes.

To overcome this problem in-memory computing software is designed from the ground up to store data in a distributed fashion, where the entire dataset is divided into individual computers' memory, each storing only a portion of the overall dataset. Once data is partitioned - parallel distributed processing becomes a technical necessity simply because data is stored this way.

And while it makes the development of in-memory computing software challenging (literally fewer than 10 companies in the world have mastered this type of software development) - end users of in-memory computing seeking dramatic performance and scalability increas benefit greatly from this technology.

In-Memory Computing: What Is It Good For?
Let's get this out of the way first: if one wants a 2-3x performance or scalability improvements - flash storage (SSD, Flash on PCI-E, Memory Channel Storage, etc.) can do the job. It is relatively cheap and can provide that kind of modest performance boost.

To see, however, what a difference in-memory computing can make, consider this real-live example...

Last year GridGain won an open tender for one of the largest banks in the world. The tender was for a risk analytics system to provide real-time analysis of risk for the bank's trading desk (common use case for in-memory computing in the financial industry). In this tender GridGain software demonstrated one billion (!) business transactions per second on 10 commodity servers with the total of 1TB of RAM. The total cost of these 10 commodity servers? Less than $25K.

Now, read the previous paragraph again: one billion financial transactions per second on $25K worth of hardware. That is the in-memory computing difference - not just 2-3x times faster; more than 100x faster than theoretically possible even with the most expensive flash-based storage available on today's market (forget about spinning disks). And 1TB of flash-based storage alone would cost 10x of entire hardware setup mentioned.

Importantly, that performance translates directly into the clear business value:

  • you can use less hardware to support the required performance and throughput SLAs, get better data center consolidation, and significantly reduce capital costs, as well as operational and infrastructure overhead, and
  • you can also significantly extend the lifetime of your existing hardware and software by getting increased performance and improve its ROI by using what you already have longer and making it go faster.

And that's what makes in-memory computing such a hot topic these days: the demand to process ever growing datasets in real-time can now be fulfilled with the extraordinary performance and scale of in-memory computing, with economics so compelling that the business case becomes clear and obvious.

In-Memory Computing: What Are the Best Use Cases?
I can only speak for GridGain here but our user base is big enough to be statistically significant. GridGain has production customers in a wide variety of industries:

  • Investment banking
  • Insurance claim processing & modeling
  • Real-time ad platforms
  • Real-time sentiment analysis
  • Merchant platform for online games
  • Hyper-local advertising
  • Geospatial/GIS processing
  • Medical imaging processing
  • Natural language processing & cognitive computing
  • Real-time machine learning
  • Complex event processing of streaming sensor data

And we're also seeing our solutions deployed for more mundane use cases, like speeding the response time of a student registration system from 45 seconds to under a half-second.

By looking at this list it becomes pretty obvious that the best use cases are defined not by specific industry but by the underlying technical need, i.e. the need to get the ultimate best and uncompromised performance and scalability for a given task.

In many of these real-life deployments in-memory computing was an enabling technology, the technology that made these particular systems possible to consider and ultimately possible to implement.

The bottom line is that in-memory computing is beginning to unleash a wave of innovation that's not built on Big Data per se, but on Big Ideas, ideas that are suddenly attainable. It's blowing up the costly economics of traditional computing that frankly can't keep up with either the growth of information or the scale of demand.

As the Internet expands from connecting people to connecting things, devices like refrigerators, thermostats, light bulbs, jet engines and even heart rate monitors are producing streams of information that will not just inform us, but also protect us, make us healthier and help us live richer lives. We'll begin to enjoy conveniences and experiences that only existed in science fiction novels. The technology to support this transformation exists today - and it's called in-memory computing.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@MicroservicesExpo Stories
One of the biggest challenges with adopting a DevOps mentality is: new applications are easily adapted to cloud-native, microservice-based, or containerized architectures - they can be built for them - but old applications need complex refactoring. On the other hand, these new technologies can require relearning or adapting new, oftentimes more complex, methodologies and tools to be ready for production. In his general session at @DevOpsSummit at 20th Cloud Expo, Chris Brown, Solutions Marketi...
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Today companies are looking to achieve cloud-first digital agility to reduce time-to-market, optimize utilization of resources, and rapidly deliver disruptive business solutions. However, leveraging the benefits of cloud deployments can be complicated for companies with extensive legacy computing environments. In his session at 21st Cloud Expo, Craig Sproule, founder and CEO of Metavine, will outline the challenges enterprises face in migrating legacy solutions to the cloud. He will also prese...
DevOps at Cloud Expo – being held October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real r...
‘Trend’ is a pretty common business term, but its definition tends to vary by industry. In performance monitoring, trend, or trend shift, is a key metric that is used to indicate change. Change is inevitable. Today’s websites must frequently update and change to keep up with competition and attract new users, but such changes can have a negative impact on the user experience if not managed properly. The dynamic nature of the Internet makes it necessary to constantly monitor different metrics. O...
With the rise of DevOps, containers are at the brink of becoming a pervasive technology in Enterprise IT to accelerate application delivery for the business. When it comes to adopting containers in the enterprise, security is the highest adoption barrier. Is your organization ready to address the security risks with containers for your DevOps environment? In his session at @DevOpsSummit at 21st Cloud Expo, Chris Van Tuin, Chief Technologist, NA West at Red Hat, will discuss: The top security r...
The last two years has seen discussions about cloud computing evolve from the public / private / hybrid split to the reality that most enterprises will be creating a complex, multi-cloud strategy. Companies are wary of committing all of their resources to a single cloud, and instead are choosing to spread the risk – and the benefits – of cloud computing across multiple providers and internal infrastructures, as they follow their business needs. Will this approach be successful? How large is the ...
Enterprises are moving to the cloud faster than most of us in security expected. CIOs are going from 0 to 100 in cloud adoption and leaving security teams in the dust. Once cloud is part of an enterprise stack, it’s unclear who has responsibility for the protection of applications, services, and data. When cloud breaches occur, whether active compromise or a publicly accessible database, the blame must fall on both service providers and users. In his session at 21st Cloud Expo, Ben Johnson, C...
Many organizations adopt DevOps to reduce cycle times and deliver software faster; some take on DevOps to drive higher quality and better end-user experience; others look to DevOps for a clearer line-of-sight to customers to drive better business impacts. In truth, these three foundations go together. In this power panel at @DevOpsSummit 21st Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, industry experts will discuss how leading organizations build application success from all...
Most of the time there is a lot of work involved to move to the cloud, and most of that isn't really related to AWS or Azure or Google Cloud. Before we talk about public cloud vendors and DevOps tools, there are usually several technical and non-technical challenges that are connected to it and that every company needs to solve to move to the cloud. In his session at 21st Cloud Expo, Stefano Bellasio, CEO and founder of Cloud Academy Inc., will discuss what the tools, disciplines, and cultural...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory?
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
The nature of the technology business is forward-thinking. It focuses on the future and what’s coming next. Innovations and creativity in our world of software development strive to improve the status quo and increase customer satisfaction through speed and increased connectivity. Yet, while it's exciting to see enterprises embrace new ways of thinking and advance their processes with cutting edge technology, it rarely happens rapidly or even simultaneously across all industries.
These days, APIs have become an integral part of the digital transformation journey for all enterprises. Every digital innovation story is connected to APIs . But have you ever pondered over to know what are the source of these APIs? Let me explain - APIs sources can be varied, internal or external, solving different purposes, but mostly categorized into the following two categories. Data lakes is a term used to represent disconnected but relevant data that are used by various business units wit...
21st International Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Me...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Hypertext Transfer Protocol, or HTTP, was first introduced by Tim Berners-Lee in 1991. The initial version HTTP/0.9 was designed to facilitate data transfers between a client and server. The protocol works on a request-response model over a TCP connection, but it’s evolved over the years to include several improvements and advanced features. The latest version is HTTP/2, which has introduced major advancements that prioritize webpage performance and speed.