Welcome!

Microservices Expo Authors: Matt Brickey, Elizabeth White, Christoph Schell, Liz McMillan, Mehdi Daoudi

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Linux Containers, SDN Journal

Containers Expo Blog: Blog Post

In-Memory Computing: In Plain English

Explaining in-memory computing and defining what in-memory computing is really about

After five days (and eleven meetings) with new customers in Europe, Russia, and the Middle East, I think time is right for another refinement of in-memory computing's definition. To me, it is clear that our industry is lagging when it comes to explaining in-memory computing to potential customers and defining what in-memory computing is really about. We struggle to come up with a simple, understandable definition of what in-memory computing is all about, what problems it solves, and what uses are a good fit for the technology.

In-Memory Computing: What Is It?
In-memory computing means using a type of middleware software that allows one to store data in RAM, across a cluster of computers, and process it in parallel. Consider operational datasets typically stored in a centralized database which you can now store in "connected" RAM across multiple computers. RAM, roughly, is 5,000 times faster than traditional spinning disk. Add to the mix native support for parallel processing, and things get very fast. Really, really, fast.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing. While in-memory data storage is expected of in-memory technology, the parallelization and distribution of data processing, which is an integral part of in-memory computing, calls for an explanation.

Parallel distributed processing capabilities of in-memory computing are... a technical necessity. Consider this: a single modern computer can hardly have enough RAM to hold a significant dataset. In fact, a typical x86 server today (mid-2014) would have somewhere between 32GB to 256GB of RAM. Although this could be a significant amount of memory for a single computer, that's not enough to store many of today's operational datasets that easily measure in terabytes.

To overcome this problem in-memory computing software is designed from the ground up to store data in a distributed fashion, where the entire dataset is divided into individual computers' memory, each storing only a portion of the overall dataset. Once data is partitioned - parallel distributed processing becomes a technical necessity simply because data is stored this way.

And while it makes the development of in-memory computing software challenging (literally fewer than 10 companies in the world have mastered this type of software development) - end users of in-memory computing seeking dramatic performance and scalability increas benefit greatly from this technology.

In-Memory Computing: What Is It Good For?
Let's get this out of the way first: if one wants a 2-3x performance or scalability improvements - flash storage (SSD, Flash on PCI-E, Memory Channel Storage, etc.) can do the job. It is relatively cheap and can provide that kind of modest performance boost.

To see, however, what a difference in-memory computing can make, consider this real-live example...

Last year GridGain won an open tender for one of the largest banks in the world. The tender was for a risk analytics system to provide real-time analysis of risk for the bank's trading desk (common use case for in-memory computing in the financial industry). In this tender GridGain software demonstrated one billion (!) business transactions per second on 10 commodity servers with the total of 1TB of RAM. The total cost of these 10 commodity servers? Less than $25K.

Now, read the previous paragraph again: one billion financial transactions per second on $25K worth of hardware. That is the in-memory computing difference - not just 2-3x times faster; more than 100x faster than theoretically possible even with the most expensive flash-based storage available on today's market (forget about spinning disks). And 1TB of flash-based storage alone would cost 10x of entire hardware setup mentioned.

Importantly, that performance translates directly into the clear business value:

  • you can use less hardware to support the required performance and throughput SLAs, get better data center consolidation, and significantly reduce capital costs, as well as operational and infrastructure overhead, and
  • you can also significantly extend the lifetime of your existing hardware and software by getting increased performance and improve its ROI by using what you already have longer and making it go faster.

And that's what makes in-memory computing such a hot topic these days: the demand to process ever growing datasets in real-time can now be fulfilled with the extraordinary performance and scale of in-memory computing, with economics so compelling that the business case becomes clear and obvious.

In-Memory Computing: What Are the Best Use Cases?
I can only speak for GridGain here but our user base is big enough to be statistically significant. GridGain has production customers in a wide variety of industries:

  • Investment banking
  • Insurance claim processing & modeling
  • Real-time ad platforms
  • Real-time sentiment analysis
  • Merchant platform for online games
  • Hyper-local advertising
  • Geospatial/GIS processing
  • Medical imaging processing
  • Natural language processing & cognitive computing
  • Real-time machine learning
  • Complex event processing of streaming sensor data

And we're also seeing our solutions deployed for more mundane use cases, like speeding the response time of a student registration system from 45 seconds to under a half-second.

By looking at this list it becomes pretty obvious that the best use cases are defined not by specific industry but by the underlying technical need, i.e. the need to get the ultimate best and uncompromised performance and scalability for a given task.

In many of these real-life deployments in-memory computing was an enabling technology, the technology that made these particular systems possible to consider and ultimately possible to implement.

The bottom line is that in-memory computing is beginning to unleash a wave of innovation that's not built on Big Data per se, but on Big Ideas, ideas that are suddenly attainable. It's blowing up the costly economics of traditional computing that frankly can't keep up with either the growth of information or the scale of demand.

As the Internet expands from connecting people to connecting things, devices like refrigerators, thermostats, light bulbs, jet engines and even heart rate monitors are producing streams of information that will not just inform us, but also protect us, make us healthier and help us live richer lives. We'll begin to enjoy conveniences and experiences that only existed in science fiction novels. The technology to support this transformation exists today - and it's called in-memory computing.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@MicroservicesExpo Stories
From personal care products to groceries and movies on demand, cloud-based subscriptions are fulfilling the needs of consumers across an array of market sectors. Nowhere is this shift to subscription services more evident than in the technology sector. By adopting an Everything-as-a-Service (XaaS) delivery model, companies are able to tailor their computing environments to shape the experiences they want for customers as well as their workforce.
If you read a lot of business and technology publications, you might think public clouds are universally preferred over all other cloud options. To be sure, the numbers posted by Amazon Web Services (AWS) and Microsoft’s Azure platform are nothing short of impressive. Statistics reveal that public clouds are growing faster than private clouds and analysts at IDC predict that public cloud growth will be 3 times that of private clouds by 2019.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"We focus on SAP workloads because they are among the most powerful but somewhat challenging workloads out there to take into public cloud," explained Swen Conrad, CEO of Ocean9, Inc., in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I think DevOps is now a rambunctious teenager – it’s starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
If you are thinking about moving applications off a mainframe and over to open systems and the cloud, consider these guidelines to prioritize what to move and what to eliminate. On the surface, mainframe architecture seems relatively simple: A centrally located computer processes data through an input/output subsystem and stores its computations in memory. At the other end of the mainframe are printers and terminals that communicate with the mainframe through protocols. For all of its appare...
Your homes and cars can be automated and self-serviced. Why can't your storage? From simply asking questions to analyze and troubleshoot your infrastructure, to provisioning storage with snapshots, recovery and replication, your wildest sci-fi dream has come true. In his session at @DevOpsSummit at 20th Cloud Expo, Dan Florea, Director of Product Management at Tintri, provided a ChatOps demo where you can talk to your storage and manage it from anywhere, through Slack and similar services with...
"Peak 10 is a hybrid infrastructure provider across the nation. We are in the thick of things when it comes to hybrid IT," explained Michael Fuhrman, Chief Technology Officer at Peak 10, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
"DivvyCloud as a company set out to help customers automate solutions to the most common cloud problems," noted Jeremy Snyder, VP of Business Development at DivvyCloud, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Data reduction delivers compelling cost reduction that substantially improves the business case in every cloud deployment model. No matter which cloud approach you choose, the cost savings benefits from data reduction should not be ignored and must be a component of your cloud strategy. IT professionals are finding that the future of IT infrastructure lies in the cloud. Data reduction technologies enable clouds — public, private, and hybrid — to deliver business agility and elasticity at the lo...
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
"As we've gone out into the public cloud we've seen that over time we may have lost a few things - we've lost control, we've given up cost to a certain extent, and then security, flexibility," explained Steve Conner, VP of Sales at Cloudistics,in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I will be talking about ChatOps and ChatOps as a way to solve some problems in the DevOps space," explained Himanshu Chhetri, CTO of Addteq, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Five years ago development was seen as a dead-end career, now it’s anything but – with an explosion in mobile and IoT initiatives increasing the demand for skilled engineers. But apart from having a ready supply of great coders, what constitutes true ‘DevOps Royalty’? It’ll be the ability to craft resilient architectures, supportability, security everywhere across the software lifecycle. In his keynote at @DevOpsSummit at 20th Cloud Expo, Jeffrey Scheaffer, GM and SVP, Continuous Delivery Busine...
"We do one of the best file systems in the world. We learned how to deal with Big Data many years ago and we implemented this knowledge into our software," explained Jakub Ratajczak, Business Development Manager at MooseFS, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.