Welcome!

Microservices Expo Authors: Carmen Gonzalez, Elizabeth White, Pat Romanski, Liz McMillan, Roger Strukhoff

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Linux Containers, SDN Journal

Containers Expo Blog: Blog Post

In-Memory Computing: In Plain English

Explaining in-memory computing and defining what in-memory computing is really about

After five days (and eleven meetings) with new customers in Europe, Russia, and the Middle East, I think time is right for another refinement of in-memory computing's definition. To me, it is clear that our industry is lagging when it comes to explaining in-memory computing to potential customers and defining what in-memory computing is really about. We struggle to come up with a simple, understandable definition of what in-memory computing is all about, what problems it solves, and what uses are a good fit for the technology.

In-Memory Computing: What Is It?
In-memory computing means using a type of middleware software that allows one to store data in RAM, across a cluster of computers, and process it in parallel. Consider operational datasets typically stored in a centralized database which you can now store in "connected" RAM across multiple computers. RAM, roughly, is 5,000 times faster than traditional spinning disk. Add to the mix native support for parallel processing, and things get very fast. Really, really, fast.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing. While in-memory data storage is expected of in-memory technology, the parallelization and distribution of data processing, which is an integral part of in-memory computing, calls for an explanation.

Parallel distributed processing capabilities of in-memory computing are... a technical necessity. Consider this: a single modern computer can hardly have enough RAM to hold a significant dataset. In fact, a typical x86 server today (mid-2014) would have somewhere between 32GB to 256GB of RAM. Although this could be a significant amount of memory for a single computer, that's not enough to store many of today's operational datasets that easily measure in terabytes.

To overcome this problem in-memory computing software is designed from the ground up to store data in a distributed fashion, where the entire dataset is divided into individual computers' memory, each storing only a portion of the overall dataset. Once data is partitioned - parallel distributed processing becomes a technical necessity simply because data is stored this way.

And while it makes the development of in-memory computing software challenging (literally fewer than 10 companies in the world have mastered this type of software development) - end users of in-memory computing seeking dramatic performance and scalability increas benefit greatly from this technology.

In-Memory Computing: What Is It Good For?
Let's get this out of the way first: if one wants a 2-3x performance or scalability improvements - flash storage (SSD, Flash on PCI-E, Memory Channel Storage, etc.) can do the job. It is relatively cheap and can provide that kind of modest performance boost.

To see, however, what a difference in-memory computing can make, consider this real-live example...

Last year GridGain won an open tender for one of the largest banks in the world. The tender was for a risk analytics system to provide real-time analysis of risk for the bank's trading desk (common use case for in-memory computing in the financial industry). In this tender GridGain software demonstrated one billion (!) business transactions per second on 10 commodity servers with the total of 1TB of RAM. The total cost of these 10 commodity servers? Less than $25K.

Now, read the previous paragraph again: one billion financial transactions per second on $25K worth of hardware. That is the in-memory computing difference - not just 2-3x times faster; more than 100x faster than theoretically possible even with the most expensive flash-based storage available on today's market (forget about spinning disks). And 1TB of flash-based storage alone would cost 10x of entire hardware setup mentioned.

Importantly, that performance translates directly into the clear business value:

  • you can use less hardware to support the required performance and throughput SLAs, get better data center consolidation, and significantly reduce capital costs, as well as operational and infrastructure overhead, and
  • you can also significantly extend the lifetime of your existing hardware and software by getting increased performance and improve its ROI by using what you already have longer and making it go faster.

And that's what makes in-memory computing such a hot topic these days: the demand to process ever growing datasets in real-time can now be fulfilled with the extraordinary performance and scale of in-memory computing, with economics so compelling that the business case becomes clear and obvious.

In-Memory Computing: What Are the Best Use Cases?
I can only speak for GridGain here but our user base is big enough to be statistically significant. GridGain has production customers in a wide variety of industries:

  • Investment banking
  • Insurance claim processing & modeling
  • Real-time ad platforms
  • Real-time sentiment analysis
  • Merchant platform for online games
  • Hyper-local advertising
  • Geospatial/GIS processing
  • Medical imaging processing
  • Natural language processing & cognitive computing
  • Real-time machine learning
  • Complex event processing of streaming sensor data

And we're also seeing our solutions deployed for more mundane use cases, like speeding the response time of a student registration system from 45 seconds to under a half-second.

By looking at this list it becomes pretty obvious that the best use cases are defined not by specific industry but by the underlying technical need, i.e. the need to get the ultimate best and uncompromised performance and scalability for a given task.

In many of these real-life deployments in-memory computing was an enabling technology, the technology that made these particular systems possible to consider and ultimately possible to implement.

The bottom line is that in-memory computing is beginning to unleash a wave of innovation that's not built on Big Data per se, but on Big Ideas, ideas that are suddenly attainable. It's blowing up the costly economics of traditional computing that frankly can't keep up with either the growth of information or the scale of demand.

As the Internet expands from connecting people to connecting things, devices like refrigerators, thermostats, light bulbs, jet engines and even heart rate monitors are producing streams of information that will not just inform us, but also protect us, make us healthier and help us live richer lives. We'll begin to enjoy conveniences and experiences that only existed in science fiction novels. The technology to support this transformation exists today - and it's called in-memory computing.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@MicroservicesExpo Stories
Internet of @ThingsExpo, taking place June 6-8, 2017 at the Javits Center in New York City, New York, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @ThingsExpo New York Call for Papers is now open.
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his session at @DevOpsSummit 19th Cloud Expo, Eric Robertson, General Manager at CollabNet, showed how customers are able to achieve a level of transparency that enables everyone fro...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Rapid innovation, changing business landscapes, and new IT demands force businesses to make changes quickly. In the eyes of many, containers are at the brink of becoming a pervasive technology in enterprise IT to accelerate application delivery. In this presentation, attendees learned about the: The transformation of IT to a DevOps, microservices, and container-based architecture What are containers and how DevOps practices can operate in a container-based environment A demonstration of how ...
As we enter the final week before the 19th International Cloud Expo | @ThingsExpo in Santa Clara, CA, it's time for me to reflect on six big topics that will be important during the show. Hybrid Cloud This general-purpose term seems to provide a comfort zone for many enterprise IT managers. It sounds reassuring to be able to work with one of the major public-cloud providers like AWS or Microsoft Azure while still maintaining an on-site presence.
Between 2005 and 2020, data volumes will grow by a factor of 300 – enough data to stack CDs from the earth to the moon 162 times. This has come to be known as the ‘big data’ phenomenon. Unfortunately, traditional approaches to handling, storing and analyzing data aren’t adequate at this scale: they’re too costly, slow and physically cumbersome to keep up. Fortunately, in response a new breed of technology has emerged that is cheaper, faster and more scalable. Yet, in meeting these new needs they...
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his general session at @DevOpsSummit at 19th Cloud Expo, Phil Hombledal, Solution Architect at CollabNet, discussed how customers are able to achieve a level of transparency that e...
@DevOpsSummit taking place June 6-8, 2017 at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @DevOpsSummit at Cloud Expo New York Call for Papers is now open.
In his session at 19th Cloud Expo, Claude Remillard, Principal Program Manager in Developer Division at Microsoft, contrasted how his team used config as code and immutable patterns for continuous delivery of microservices and apps to the cloud. He showed how the immutable patterns helps developers do away with most of the complexity of config as code-enabling scenarios such as rollback, zero downtime upgrades with far greater simplicity. He also demoed building immutable pipelines in the cloud ...
@DevOpsSummit at Cloud taking place June 6-8, 2017, at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long develop...
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
Get deep visibility into the performance of your databases and expert advice for performance optimization and tuning. You can't get application performance without database performance. Give everyone on the team a comprehensive view of how every aspect of the system affects performance across SQL database operations, host server and OS, virtualization resources and storage I/O. Quickly find bottlenecks and troubleshoot complex problems.
In IT, we sometimes coin terms for things before we know exactly what they are and how they’ll be used. The resulting terms may capture a common set of aspirations and goals – as “cloud” did broadly for on-demand, self-service, and flexible computing. But such a term can also lump together diverse and even competing practices, technologies, and priorities to the point where important distinctions are glossed over and lost.
Monitoring of Docker environments is challenging. Why? Because each container typically runs a single process, has its own environment, utilizes virtual networks, or has various methods of managing storage. Traditional monitoring solutions take metrics from each server and applications they run. These servers and applications running on them are typically very static, with very long uptimes. Docker deployments are different: a set of containers may run many applications, all sharing the resource...
Join Impiger for their featured webinar: ‘Cloud Computing: A Roadmap to Modern Software Delivery’ on November 10, 2016, at 12:00 pm CST. Very few companies have not experienced some impact to their IT delivery due to the evolution of cloud computing. This webinar is not about deciding whether you should entertain moving some or all of your IT to the cloud, but rather, a detailed look under the hood to help IT professionals understand how cloud adoption has evolved and what trends will impact th...
Application transformation and DevOps practices are two sides of the same coin. Enterprises that want to capture value faster, need to deliver value faster – time value of money principle. To do that enterprises need to build cloud-native apps as microservices by empowering teams to build, ship, and run in production. In his session at @DevOpsSummit at 19th Cloud Expo, Neil Gehani, senior product manager at HPE, discussed what every business should plan for how to structure their teams to delive...
IT leaders face a monumental challenge. They must figure out how to sort through the cacophony of new technologies, buzzwords, and industry hype to find the right digital path forward for their organizations. And they simply cannot afford to fail. Those organizations that are fastest to the right digital path will be the ones that win. The path forward, however, is strewn with the legacy of decisions made long ago — often before any of the current leadership team assumed their roles. While it’s ...