Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Java IoT, Industrial IoT, Microservices Expo, Machine Learning

Java IoT: Product Review

Design Patterns in Java LiveLessons Review

LiveLessons Video Training the Downloadable Version

I have spent the past few weeks watching this video series. I started watching it on the treadmill in the morning before work. I did that until I hit lesson 5. It is 4 hours and 20 minutes long. I started watching lesson 5 in front of the computer, not because I didn't want to walk for over four hours, but because I wanted to look at the code you can download with these lessons.

In lesson 5 covers a ton of patterns. The thing I like most about the way the patterns are introduced is that they are introduced working with other patterns. The way patterns should be used, together.

He uses lots of diagrams and walks through the tons of code making sure the patterns are thoroughly cover.

The thing I liked most about the course was that the speaker is not a pattern zealot. He makes sure to tell you when you would not want to use patterns and why. He gives the advantages and disadvantages of each pattern.

The downloadable code is very well organized and usable. It was really nice to just import the project, build it, and run it. No issues at all. I am not usually that lucky with Java samples.

You do not need to know Java to watch this course. I do very very little in Java. I am in Objective-C or C# 90% of the time I am in code. I do have a lot of experience with patterns at all levels (code, integration, architectural, information management, enterprise, etc.). Although you can do without Java, I do recommend you have OOP under your belt. I also felt having the past experience with pattern really helped me keep up.

If you don't have pattern experience, I think you may have to work a little harder to keep up. That is not a bad thing because the material covered is real worth the extra effort to get under your belt. The more you work at understanding the concepts the the speaker cover, the more embedded in your development thought process it will become.

Below is a brief overview of each lesson. They are taken from the publisher's web site.

Lesson 1:
Experts in most domains perform quite differently than beginners. For example, professional athletes, musicians, and dancers move fluidly and effortlessly, without focusing on each individual movement. Likewise, when master software developers write code, they approach it differently than novices, drawing on years of design experience to help guide their solutions.

When watching experts perform, it's often easy to forget how much effort they put into reaching these high levels of achievement. Continuous practice, repetition, and mentoring from other experts are crucial to their success. At the heart of all these activities is knowledge and mastery of patterns, which are reusable solutions to common problems that arise within particular contexts.

In this lesson you learn to recognize the importance of design experience when becoming a master software developer. You also learn what patterns are and how they help codify design experience to improve software quality and developer productivity. In addition, you learn the common characteristics of patterns and pattern descriptions. Finally, you learn about the history of the Gang of Four book and its patterns, as well as learn about key types of relationships among patterns.

Lesson 2:
While it’s certainly possible to discuss patterns in the abstract, good design and programming practices are not best learned through generalities and platitudes. Instead, it’s more effective to see how significant programs can be made easier to write and read, easier to maintain and modify, and more efficient and robust via the application of time-proven software patterns.

This lesson therefore presents an overview of an expression tree processing app that we use as a case study throughout the course. You learn about the goals of this case study, which provides a realistic–yet tractable–context in which to explore the why, the how, and the benefits and limitations of applying many Gang of Four design patterns to an application written in Java. Using the case study as a guide, you also learn how to recognize key structural and behavioral properties in a domain, as well as understand the case study's functional and non-functional requirements.

All the pattern-oriented software presented in the case study is available in open-source form from the course website. You can see throughout the course that applying Gang of Four patterns in the case study not only improves the application’s modularity, extensibility, and quality but also enhances its portability so that it runs on a range of Java platforms, including Android and Eclipse.

Lesson 3:
Algorithmic decomposition is a historically popular software development method that structures software based on the actions performed by algorithms in a program. It decomposes general actions in an algorithm iteratively and recursively into more specific actions. The design components in an algorithmic decomposition typically correspond to processing steps in an execution sequence, which are usually implemented via functions or procedures.

In this lesson you learn how to develop an algorithmic decomposition of the expression tree processing app case study. You also learn how to evaluate the benefits and limitations of algorithmic decomposition. This material provides a baseline for comparison with our pattern- and object-oriented expression tree processing app presented in subsequent lessons.

Lesson 4:
Object-oriented design is a method of planning a system of interacting objects to solve software problems. This design paradigm employs hierarchical data abstraction, where components are structured based on stable class/object roles and relationships, rather than functions corresponding to actions (as is the case with algorithmic decomposition). Moreover, object-oriented design associates actions with classes of objects in a manner that emphasizes high cohesion and low coupling. In many well-designed object-oriented programs, classes and objects are defined and associated in accordance with patterns and combined to form frameworks.

In this lesson you learn how to develop an object-oriented design for the expression tree processing app case study. In addition, you learn how to evaluate the benefits and limitations of object-oriented design relative to the algorithmic decomposition approach presented in Lesson 3.

Lesson 5:
The book Design Patterns: Elements of Reusable Object-Oriented Software (the so-called “Gang of Four” book) presents 23 patterns that document recurring solutions to common problems that arise when developing software in particular contexts. In this lesson you learn how more than a dozen patterns from the Gang of Four book can be applied to the Java-based expression tree processing app case study to resolve key design problems and improve the apps modularity, extensibility, portability, and quality. This lesson forms the bulk of the course and covers the following patterns:

• Composite, which treats individual objects and multiple, recursively-composed objects uniformly.
• Bridge, which separates an abstraction from its implementation(s) so the two can vary independently.
• Interpreter, which when given a language, defines a representation for its grammar.
• Builder, which separates the construction of a complex object from its representation.
• Iterator, which accesses elements of an aggregate without exposing its representation.
• Strategy, which defines a family of algorithms, encapsulates each one, and makes them interchangeable.
• Visitor, which centralizes operations on an object structure so that they can vary independently.
• Command, which encapsulates the request for a service as an object.
• Factory Method, which provides an interface for creating an object, but leaves the choice of the concrete type to a subclass.
• State, which allows an object to alter its behavior when its internal state changes, making object appear to change its class.
• Template Method, which provides a skeleton of an algorithm in a method, deferring some steps to subclasses.
• Singleton, which ensures a class only has one instance and provides a global point of access.

The lesson also touches on several other Gang of Four patterns, including Abstract Factory, Adaptor, Decorator, and Observer.

Lesson 6:
The pattern- and object-oriented version of the expression tree processing app case study presented in Lesson 5 provided many improvements compared with the algorithmic decomposition approach described in Lesson 3. For example, it's much more modular and extensible, its design matches the domain better, and it incurs less space overhead. The design of the expression tree process app also exhibits “high pattern density.” For instance, nearly all its classes play a role in one or more Gang of Four patterns. In addition, patterns help clarify the relationships of the many classes comprising the case study’s design. The same pattern-oriented design can be implemented readily in many popular object-oriented programming languages. For example, the Java and C++ solutions are nearly identical, modulo minor syntactic and semantic differences in these two languages. Although pattern- and object-oriented solutions are powerful, becoming a master software developer requires a balanced and nuanced understanding of the pros and cons of patterns. In this lesson, you learn how to evaluate both the benefits and limitations of patterns.

I highly recommend this video series to anyone working in an object oriented language.

Get the video series here.

If you have no design pattern experience at all, below are a few of the best available on the topic.

More Stories By Tad Anderson

Tad Anderson has been doing Software Architecture for 18 years and Enterprise Architecture for the past few.

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.