Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Derek Weeks, Pat Romanski, Karthick Viswanathan

Related Topics: @DXWorldExpo, Java IoT, Microservices Expo, Microsoft Cloud

@DXWorldExpo: Article

Detecting Anomalies that Matter!

Like needles in a haystack

As Netuitive's Chief Data Scientist, I am fortunate to work closely with some of the worlds' largest banks, telcos, and eCommerce companies. Increasingly the executives that I speak with at these companies are no longer focused on just detecting application performance anomalies - they want to understand the impact this has on the business.  For example - "is the current slowdown in the payment service impacting sales?"

You can think of it as detecting IT operations anomalies that really matter - but this is easier said than done.

Like Needles in a Haystack
When it comes to IT analytics, there is a general notion that the more monitoring data you are able to consume, analyze, and correlate, the more accurate your results will be. Just pile all that infrastructure, application performance, and business metric data together and good things are bound to happen, right?

Larger organizations typically have access to voluminous data being generated from dozens of monitoring tools that are tracking thousands of infrastructure and application components.  At the same time, these companies often track hundreds of business metrics using a totally different set of tools.

The problem is that, collectively, these monitoring tools do not communicate with each other.  Not only is it hard to get holistic visibility into the performance and health of a particular business service, it's even harder to discover complex anomalies that have business impact.

Anomalies are Like Snowflakes
Compounding the challenge is the fact that no two anomalies are alike.  Anomalies that matter have multiple facets.  They reflect a composite behavior of many layers of interacting and inter-dependent components.  Additionally, they can be cleverly disguised or hidden in a haze of visible but insignificant noise.  No matter how many graphs and charts you display on the largest LCD monitor you can find - the type of scalable real-time analysis required to find and expose what's important is humanly impossible.

Enter IT Operations Analytics
Analytics such as statistical machine learning allow us to understand the "normal" behavior of each resource we are tracking - be it a single IT component, web service, application, or business process. Additional algorithms help us find patterns and correlations between the thousands of IT and business metrics that matter in a critical service.

The Shift Towards IT Operations Analytics is Already Happening
This is not about the future.  It's about what companies are doing today.

Several years ago thought-leading enterprises (primarily large banks with critical revenue driving services) began experimenting with a new breed of IT analytics platform. These companies' electronic and web facing businesses had so much revenue (and reputation) at stake that they needed to find the anomalies that matter -- the ones that were truly indicative of current or impending problems.

Starting with an almost "blank slate", these forward-thinking companies began developing open IT analytics platforms that easily integrated any type of data source in real time to provide a comprehensive view of patterns and relationships between IT infrastructure and business service performance. This was only possible with technologies that leveraged sophisticated data integration, knowledge modeling, and analytics to discover and capture the unique behavior of complex business services.  Anything less would fail, because, like snowflakes, no two anomalies are alike.

The Continuous Need for Algorithm Research
The online banking system at one bank is different than the online system at the next bank.  And the transaction slowdown that occurred last week may have a totally different root cause than the one two months ago.  Even more interesting are external factors such as seasonality and its effects on demand.  For example, payment companies see increased workload around holidays such as Thanksgiving and Mother's Day whereas gaming/betting companies' demand is driven more by factors such as the NFL Playoffs or the World Series.

For this reason, analytics research is an ongoing endeavor at Netuitive - part driven by customer needs and in part by advances in technology.   Once Netuitive technology is installed in an enterprise and integrating data collected across multiple layers in the service stack, behavior learning begins immediately.  As time passes, the statistical algorithms have more observations to feed their results and this leads to increasing confidence in both anomalies detected and proactive forecasts.  Additionally, customer domain knowledge can be layered in to Netuitive's real-time analysis in the form of knowledge bases and supervised learning algorithms.  The Research Group at Netuitive works closely with our Professional Services Group as well as directly with customers to regularly review actual delivered alarm quality to tune the algorithms that we have as well as identify new algorithms that would deliver greater value in an actionable timeframe.

Since Netuitive's software architecture allows for "pluggable" algorithms, we can incrementally introduce new analytics capabilities easily, at first in an experimental or laboratory setting and ultimately, once verified, into production.

The IT operations management market has matured over the past two decades to the point that most critical components are well instrumented.  The data is there and mainstream IT organizations (not just visionary early adopters) realize that analytics deliver measurable and tangible value.   My vision and challenge is to get our platform to the point where customers can easily customize the algorithms on their own, as their needs and IT infrastructure evolve over time.  This is where platforms need to get to because of the endless variety of ways that enterprises must discover and remediate "anomalies that matter".

Stay tuned.  In an upcoming blog I will drill down on some specific industry examples of algorithms we developed as part of some large enterprise IT analytic platform solutions.

More Stories By Elizabeth A. Nichols, Ph.D

As Chief Data Scientist for Netuitive, Elizabeth A. Nichols, Ph.D. leads development of algorithms, models, and analytics. This includes both enriching the company’s current portfolio as well as developing new analytics to support current and emerging technologies and IT-dependent business services across multiple industry sectors.

Previously, Dr. Nichols co-founded PlexLogic, a provider of open analytics services for quantitative data analysis, risk modeling and data visualization. In her role as CTO and Chief Data Scientist, she developed a cloud platform for collecting, cleansing and correlating data from heterogeneous sources, computing metrics, applying algorithms and models, and visualizing results. Prior to Plexlogic, Dr. Nichols co-founded and served as CTO for ClearPoint Metrics, a security metrics software platform that was eventually sold to nCircle. Prior to ClearPoint Metrics, Dr. Nichols served in technical advisory and leadership positions at CA, Legent Corp, BladeLogic, and Digital Analysis Corp. At CA, she was VP of Research and Development and Lead Architect for agent instrumentation and analytics for CA Unicenter. After receiving a Ph.D. in Mathematics from Duke University, she began her career as an operations research analyst developing war gaming models for the US Army.

@MicroservicesExpo Stories
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Admiral Calcote - also known as Lee Calcote (@lcalcote) or the Ginger Geek to his friends - gave a presentation entitled Characterizing and Contrasting Container Orchestrators at the 2016 All Day DevOps conference. Okay, he isn't really an admiral - nor does anyone call him that - but he used the title admiral to describe what container orchestrators do, relating it to an admiral directing a fleet of container ships. You could also say that they are like the conductor of an orchestra, directing...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
Many IT organizations have come to learn that leveraging cloud infrastructure is not just unavoidable, it’s one of the most effective paths for IT organizations to become more responsive to business needs. Yet with the cloud comes new challenges, including minimizing downtime, decreasing the cost of operations, and preventing employee burnout to name a few. As companies migrate their processes and procedures to their new reality of a cloud-based infrastructure, an incident management solution...
Gaining visibility in today’s sprawling cloud infrastructure is complex and laborious, involving drilling down into tools offered by various cloud services providers. Enterprise IT organizations need smarter and effective tools at their disposal in order to address this pertinent problem. Gaining a 360 - degree view of the cloud costs requires collection and analysis of the cost data across all cloud infrastructures used inside an enterprise.
Our work, both with clients and with tools, has lead us to wonder how it is that organizations are handling compliance issues in the cloud. The big cloud vendors offer compliance for their infrastructure, but the shared responsibility model requires that you take certain steps to meet compliance requirements. Which lead us to start poking around a little more. We wanted to get a picture of what was available, and how it was being used. There is a lot of fluidity in this space, as in all things ...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Recent survey done across top 500 fortune companies shows almost 70% of the CIO have either heard about IAC from their infrastructure head or they are on their way to implement IAC. Yet if you look under the hood while some level of automation has been done, most of the infrastructure is still managed in much tradition/legacy way. So, what is Infrastructure as Code? how do you determine if your IT infrastructure is truly automated?
Every few years, a disruptive force comes along that prompts us to reframe our understanding of what something means, or how it works. For years, the notion of what a computer is and how you make one went pretty much unchallenged. Then virtualization came along, followed by cloud computing, and most recently containers. Suddenly the old rules no longer seemed to apply, or at least they didn’t always apply. These disruptors made us reconsider our IT worldview.