Click here to close now.

Welcome!

@MicroservicesE Blog Authors: Elizabeth White, Pat Romanski, Lori MacVittie, Liz McMillan, Cloud Best Practices Network

Related Topics: @ContainersExpo, @MicroservicesE Blog, @CloudExpo Blog, @BigDataExpo Blog, SDN Journal, @DevOpsSummit Blog

@ContainersExpo: Article

Edge Virtualization and the MicroCloud

Benefits and Difference from Private and Public Clouds

The benefits of public and private clouds based on virtualization are varied and well known. In 2013, more than 40 percent of enterprises have or are adopting virtualized private clouds in the data center, and another 40 percent are evaluating virtualization solutions. Nevertheless, less than 10 years ago, the number of enterprises doing any kind of private cloud virtualization was almost nonexistent.

Some of the benefits driving this rapid adoption in the enterprise, apply equally well for small-to-medium businesses (SMBs) and the edge. These benefits include:

  • Application compartmentalization - containment within the application's own O/S processor and I/O space (prevents single applications from consuming a platform's resources or affecting other applications due to problems)
  • Simplified security and quality of service (QoS) policies - administration across sites, applications, and networks
  • Automated application integration and orchestration - simplification of installation, upgrades, and migrations without platform reboots or network downtime
  • Better scaling and platform optimization - scale is simple addition
  • Improved survivability and performance - treat multiple platforms as one system

For the purposes of this article, "edge virtualization" is described as the MicroCloud - to distinguish it from "public" and "private" clouds typically associated with the data center. The following are distinctive attributes of the edge MicroCloud (versus private and public clouds).

  • It is located at the WAN interface of an SMB (typically the Internet) or a remote site in a larger enterprise (typically MPLS)
  • Network bandwidth is typically constrained
  • The south side of the edge (facing the LAN) is typically less than 200 devices/users
  • Policy (security, QoS, NAC/Network Access Control) is typically required
  • Firewall, NAT and subnet functionality are required
  • The "edge" is typically price and operationally constrained
  • The edge typically applies not only to network functionality but to edge applications as well (e.g., session border control, Wi-Fi controller management, etc.)

It is expected that edge virtualization and software defined networks (SDNs) will completely replace purpose-built appliances and integrated applications at the edge. These are all compelling reasons behind the move to virtualization in the data center, and these same attributes apply equally to the SMB and enterprise edge. When considering a transition to edge virtualization and SDN, you need to look for a solution that provides both powerful networking and orchestration capabilities.

The table below illustrates some of the benefits of virtualization at the edge and is followed by a brief description of each.

Edge Virtualization Feature Example: "Application Compartmentalization"

Virtualization Feature Overview:
One of the advantages of running on a virtual platform, versus adding an application on top of an existing O/S, is the fact that the application can run on the O/S it is optimized for, with resources dedicated for its use. This becomes especially important when the applications are deep and complete, such as with a session border controller or a voice IP key system, particularly when these might need to run on the same platform together or with another complex-type network application.

Example Description:
The following diagram illustrates one of the primary benefits of virtualization: the ability to allow an application to run in its own optimized O/S space with efficiently apportioned resources.

In this diagram, the "Orchestration and Network Manager VM" manages the configuration of the SBC VM as it relates to the disk, network, processor, and RAM. Any additional applications are then appropriately plumbed with proper resource management. This resource allocation is very difficult to do in the absence of virtualization, inasmuch as applications tend to compete with one another in the "user space" of the O/S.

Benefits:
Virtualization allows for quick integration of applications within the same platform. With proper orchestration it is possible to balance application resource needs with platform capabilities. It is not necessary to fine-tune applications to a host O/S, as is done with traditional edge devices.

Edge Virtualization Feature Example: "Simplified Policy Management"

Virtualization Feature Overview:
Policy management is one of the most complex components of any networking application. It becomes particularly complex at the edge when policy needs to be applied across platforms and geographies. Examples include "guest" and "corporate" policies-particularly for wireless access. Policy is typically used to define/limit/grant access to particular resources, such as bandwidth or data for users or devices. The complexity of policy is usually prohibitive in terms of use. Virtualization with proper orchestration greatly simplifies this required but very complex component.

Example Description:
The following diagram illustrates the simplification of policy management across sites. Superimposed upon a real site/policy map are guide blocks that emphasize sites (in columns) and policy (rows). The blue guide block emphasizes where policy (and routing) is set.

Benefits:
Policy management for security and QoS is typically complex and prone to error. Virtualization with proper orchestration greatly simplifies this critical component while improving upon the specific attributes of security and QoS.

Edge Virtualization Feature Example: "Automatic App Integration & Orchestration"

Virtualization Feature Overview:
Virtualization orchestration creates several important benefits. One of the most important of these is the ability to perform automatic integration of applications with respect to the network (automatic wiring) and its associated QoS and security policies. In a traditional implementation without the benefit of virtualization orchestration, integration tends to be fraught with errors, particularly when applied across geographies and between applications. Additionally, updates and changes in a virtual environment can usually be orchestrated as a simple switch from a running VM to the upgraded VM, whereas a traditional environment will typically require a platform reboot-thus causing all applications to lose connectivity for a period of time.

Example Description:
The following diagram illustrates the edge architecture that yields automatic app integration with virtual wiring.

Each of the colored lines represents a virtual wire (circled in red). Orchestration automatically connects these lines to the appropriate virtual switch, interface, or application.

Applications are, in turn, instantiated, configured, and plumbed by the same orchestration software. Each VM will run in its own operating system and be allocated appropriate resources. Additionally, the host hypervisor O/S and each of the VMs are isolated from each other and the WAN and LAN networks by the "network flow manager." This isolation provides both a level of security and an improvement of application upgrades/configurations.

Benefits:
Virtualization and orchestration eliminate many of the problems associated with traditional all-in-one appliances that attempt to run applications that must interact with each other and the network. Configuration mistakes are avoided, and upgrades happen with no downtime.

Edge Virtualization Feature Example: "Scalability and Optimization"

Virtualization Feature Overview:
Traditional methods of application integration usually require platform replacements in order to increase in scale. Additionally, platform optimization tends to be dependent upon the most computing-intensive application, making it difficult to balance between size and number of applications. On the other hand, virtualization has demonstrated excellent scalability and optimization value through simple addition. In fact, the trend is to reduce the size and cost of the platform, allowing more linear growth and optimization.

Example Description:
The following diagram illustrates the evolution of a typical edge configuration towards smaller and less costly virtual platforms that can provide scalable and optimized application and network support.

In order to scale, once a single platform has maximized the number of applications that it runs, it is only necessary to add a second (or third, etc.) platform. This will hold true for most full-size applications, such as web services, databases, file systems, etc., that can inherently take advantage of multiple instances. Furthermore, it is possible to move VMs from one platform to the next in order to optimize the resources of a particular application on a particular platform.

Benefits:
Virtualization in the data center has demonstrated real-world scalability and optimization for applications much more effectively than traditional dedicated platforms. These same attributes will also hold true for edge virtualization.

Edge Virtualization Feature Example: "Survivability and Performance"

Virtualization Feature Overview:
Virtualization not only yields a performance benefit, but also greatly simplifies and improves survivability and distribution (yielding further performance benefits). Survivability in a virtual environment means that even if any application(s) fail(s), the

hypervisor operating system, virtual machines, or other applications do not fail. Applications can be "spun" up in sub-second times when events cause an application, platform, or site failure. Additionally, because of network virtualization, these applications can be distributed across geographies both from a survivability and performance perspective.

Example Description:
From a performance perspective, traditional edge solutions have relied on proprietary and purpose-built hardware, resulting in high costs and underperformance. On the very low end of traditional edge solutions, most hardware is ARM-based, with minimal memory and storage. These solutions typically are purpose-built and rely on open-source applications with a small amount of software integration. Consequently, they are almost never capable of supporting the required performance of commercial or high-end applications. Additionally, because of their singular focus, they tend to be stand-alone devices incapable of surviving any type of failure. Two concrete examples running on the same platform are SDN-based networking and elastic cloud backup. The following figure represents these examples:

In the diagram, there are several points of survivability: 1) loss of connectivity to the data center, 2) platform loss, and 3) primary network loss. In each case the survivability components allow operations to continue, albeit at a reduced level (e.g., LTE speeds vs. Ethernet, routing with no updates, etc.).

Benefits:
Virtualization (platform and network) yields multiple levels of survivability and performance that are difficult to attain with traditional dedicated platforms.

Conclusion
Edge virtualization or MicroClouds can provide enterprises and SMBs with efficiencies that legacy, purpose-built appliances cannot even begin to achieve. The better management of application resources, simpler policy administration, automated application integration and orchestration, and improved scalability, survivability, and performance all lead to significant and measurable cost savings.

Managed service providers and distributed enterprises would both benefit from deploying an edge virtualization strategy. In an example use case scenario of 50 sites where MicroClouds were deployed, there was a 3:1 up-front CAPEX savings and a 5:1 average OPEX savings over 3 years.

Edge virtualization and SDN solutions are here today and ready for production deployments. Integrating them into today's enterprise data centers and SMB environments will establish a foundation for a more efficient, optimized and manageable network over the long term.

More Stories By Richard Platt

Richard Platt is CTO and vice president of engineering at Netsocket, where he is responsible for establishing the company’s technical vision and leading all aspects of its technology development. He has over 25 years experience defining, developing, and commercializing emerging technologies in both start-up and Fortune 100 environments.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at DevOps Summit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction. ...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
Many people recognize DevOps as an enormous benefit – faster application deployment, automated toolchains, support of more granular updates, better cooperation across groups. However, less appreciated is the journey enterprise IT groups need to make to achieve this outcome. The plain fact is that established IT processes reflect a very different set of goals: stability, infrequent change, hands-on administration, and alignment with ITIL. So how does an enterprise IT organization implement change...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Mashape is bringing real-time analytics to microservices with the release of Mashape Analytics. First built internally to analyze the performance of more than 13,000 APIs served by the mashape.com marketplace, this new tool provides developers with robust visibility into their APIs and how they function within microservices. A purpose-built, open analytics platform designed specifically for APIs and microservices architectures, Mashape Analytics also lets developers and DevOps teams understand w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud envir...
Sumo Logic has announced comprehensive analytics capabilities for organizations embracing DevOps practices, microservices architectures and containers to build applications. As application architectures evolve toward microservices, containers continue to gain traction for providing the ideal environment to build, deploy and operate these applications across distributed systems. The volume and complexity of data generated by these environments make monitoring and troubleshooting an enormous chall...
Containers and Docker are all the rage these days. In fact, containers — with Docker as the leading container implementation — have changed how we deploy systems, especially those comprised of microservices. Despite all the buzz, however, Docker and other containers are still relatively new and not yet mainstream. That being said, even early Docker adopters need a good monitoring tool, so last month we added Docker monitoring to SPM. We built it on top of spm-agent – the extensible framework f...
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.