Welcome!

SOA & WOA Authors: Carmen Gonzalez, Liz McMillan, Sematext Blog, ITinvolve Blog, John Savageau

Related Topics: Virtualization, SOA & WOA, Cloud Expo, Big Data Journal, SDN Journal, DevOps Journal

Virtualization: Article

Edge Virtualization and the MicroCloud

Benefits and Difference from Private and Public Clouds

The benefits of public and private clouds based on virtualization are varied and well known. In 2013, more than 40 percent of enterprises have or are adopting virtualized private clouds in the data center, and another 40 percent are evaluating virtualization solutions. Nevertheless, less than 10 years ago, the number of enterprises doing any kind of private cloud virtualization was almost nonexistent.

Some of the benefits driving this rapid adoption in the enterprise, apply equally well for small-to-medium businesses (SMBs) and the edge. These benefits include:

  • Application compartmentalization - containment within the application's own O/S processor and I/O space (prevents single applications from consuming a platform's resources or affecting other applications due to problems)
  • Simplified security and quality of service (QoS) policies - administration across sites, applications, and networks
  • Automated application integration and orchestration - simplification of installation, upgrades, and migrations without platform reboots or network downtime
  • Better scaling and platform optimization - scale is simple addition
  • Improved survivability and performance - treat multiple platforms as one system

For the purposes of this article, "edge virtualization" is described as the MicroCloud - to distinguish it from "public" and "private" clouds typically associated with the data center. The following are distinctive attributes of the edge MicroCloud (versus private and public clouds).

  • It is located at the WAN interface of an SMB (typically the Internet) or a remote site in a larger enterprise (typically MPLS)
  • Network bandwidth is typically constrained
  • The south side of the edge (facing the LAN) is typically less than 200 devices/users
  • Policy (security, QoS, NAC/Network Access Control) is typically required
  • Firewall, NAT and subnet functionality are required
  • The "edge" is typically price and operationally constrained
  • The edge typically applies not only to network functionality but to edge applications as well (e.g., session border control, Wi-Fi controller management, etc.)

It is expected that edge virtualization and software defined networks (SDNs) will completely replace purpose-built appliances and integrated applications at the edge. These are all compelling reasons behind the move to virtualization in the data center, and these same attributes apply equally to the SMB and enterprise edge. When considering a transition to edge virtualization and SDN, you need to look for a solution that provides both powerful networking and orchestration capabilities.

The table below illustrates some of the benefits of virtualization at the edge and is followed by a brief description of each.

Edge Virtualization Feature Example: "Application Compartmentalization"

Virtualization Feature Overview:
One of the advantages of running on a virtual platform, versus adding an application on top of an existing O/S, is the fact that the application can run on the O/S it is optimized for, with resources dedicated for its use. This becomes especially important when the applications are deep and complete, such as with a session border controller or a voice IP key system, particularly when these might need to run on the same platform together or with another complex-type network application.

Example Description:
The following diagram illustrates one of the primary benefits of virtualization: the ability to allow an application to run in its own optimized O/S space with efficiently apportioned resources.

In this diagram, the "Orchestration and Network Manager VM" manages the configuration of the SBC VM as it relates to the disk, network, processor, and RAM. Any additional applications are then appropriately plumbed with proper resource management. This resource allocation is very difficult to do in the absence of virtualization, inasmuch as applications tend to compete with one another in the "user space" of the O/S.

Benefits:
Virtualization allows for quick integration of applications within the same platform. With proper orchestration it is possible to balance application resource needs with platform capabilities. It is not necessary to fine-tune applications to a host O/S, as is done with traditional edge devices.

Edge Virtualization Feature Example: "Simplified Policy Management"

Virtualization Feature Overview:
Policy management is one of the most complex components of any networking application. It becomes particularly complex at the edge when policy needs to be applied across platforms and geographies. Examples include "guest" and "corporate" policies-particularly for wireless access. Policy is typically used to define/limit/grant access to particular resources, such as bandwidth or data for users or devices. The complexity of policy is usually prohibitive in terms of use. Virtualization with proper orchestration greatly simplifies this required but very complex component.

Example Description:
The following diagram illustrates the simplification of policy management across sites. Superimposed upon a real site/policy map are guide blocks that emphasize sites (in columns) and policy (rows). The blue guide block emphasizes where policy (and routing) is set.

Benefits:
Policy management for security and QoS is typically complex and prone to error. Virtualization with proper orchestration greatly simplifies this critical component while improving upon the specific attributes of security and QoS.

Edge Virtualization Feature Example: "Automatic App Integration & Orchestration"

Virtualization Feature Overview:
Virtualization orchestration creates several important benefits. One of the most important of these is the ability to perform automatic integration of applications with respect to the network (automatic wiring) and its associated QoS and security policies. In a traditional implementation without the benefit of virtualization orchestration, integration tends to be fraught with errors, particularly when applied across geographies and between applications. Additionally, updates and changes in a virtual environment can usually be orchestrated as a simple switch from a running VM to the upgraded VM, whereas a traditional environment will typically require a platform reboot-thus causing all applications to lose connectivity for a period of time.

Example Description:
The following diagram illustrates the edge architecture that yields automatic app integration with virtual wiring.

Each of the colored lines represents a virtual wire (circled in red). Orchestration automatically connects these lines to the appropriate virtual switch, interface, or application.

Applications are, in turn, instantiated, configured, and plumbed by the same orchestration software. Each VM will run in its own operating system and be allocated appropriate resources. Additionally, the host hypervisor O/S and each of the VMs are isolated from each other and the WAN and LAN networks by the "network flow manager." This isolation provides both a level of security and an improvement of application upgrades/configurations.

Benefits:
Virtualization and orchestration eliminate many of the problems associated with traditional all-in-one appliances that attempt to run applications that must interact with each other and the network. Configuration mistakes are avoided, and upgrades happen with no downtime.

Edge Virtualization Feature Example: "Scalability and Optimization"

Virtualization Feature Overview:
Traditional methods of application integration usually require platform replacements in order to increase in scale. Additionally, platform optimization tends to be dependent upon the most computing-intensive application, making it difficult to balance between size and number of applications. On the other hand, virtualization has demonstrated excellent scalability and optimization value through simple addition. In fact, the trend is to reduce the size and cost of the platform, allowing more linear growth and optimization.

Example Description:
The following diagram illustrates the evolution of a typical edge configuration towards smaller and less costly virtual platforms that can provide scalable and optimized application and network support.

In order to scale, once a single platform has maximized the number of applications that it runs, it is only necessary to add a second (or third, etc.) platform. This will hold true for most full-size applications, such as web services, databases, file systems, etc., that can inherently take advantage of multiple instances. Furthermore, it is possible to move VMs from one platform to the next in order to optimize the resources of a particular application on a particular platform.

Benefits:
Virtualization in the data center has demonstrated real-world scalability and optimization for applications much more effectively than traditional dedicated platforms. These same attributes will also hold true for edge virtualization.

Edge Virtualization Feature Example: "Survivability and Performance"

Virtualization Feature Overview:
Virtualization not only yields a performance benefit, but also greatly simplifies and improves survivability and distribution (yielding further performance benefits). Survivability in a virtual environment means that even if any application(s) fail(s), the

hypervisor operating system, virtual machines, or other applications do not fail. Applications can be "spun" up in sub-second times when events cause an application, platform, or site failure. Additionally, because of network virtualization, these applications can be distributed across geographies both from a survivability and performance perspective.

Example Description:
From a performance perspective, traditional edge solutions have relied on proprietary and purpose-built hardware, resulting in high costs and underperformance. On the very low end of traditional edge solutions, most hardware is ARM-based, with minimal memory and storage. These solutions typically are purpose-built and rely on open-source applications with a small amount of software integration. Consequently, they are almost never capable of supporting the required performance of commercial or high-end applications. Additionally, because of their singular focus, they tend to be stand-alone devices incapable of surviving any type of failure. Two concrete examples running on the same platform are SDN-based networking and elastic cloud backup. The following figure represents these examples:

In the diagram, there are several points of survivability: 1) loss of connectivity to the data center, 2) platform loss, and 3) primary network loss. In each case the survivability components allow operations to continue, albeit at a reduced level (e.g., LTE speeds vs. Ethernet, routing with no updates, etc.).

Benefits:
Virtualization (platform and network) yields multiple levels of survivability and performance that are difficult to attain with traditional dedicated platforms.

Conclusion
Edge virtualization or MicroClouds can provide enterprises and SMBs with efficiencies that legacy, purpose-built appliances cannot even begin to achieve. The better management of application resources, simpler policy administration, automated application integration and orchestration, and improved scalability, survivability, and performance all lead to significant and measurable cost savings.

Managed service providers and distributed enterprises would both benefit from deploying an edge virtualization strategy. In an example use case scenario of 50 sites where MicroClouds were deployed, there was a 3:1 up-front CAPEX savings and a 5:1 average OPEX savings over 3 years.

Edge virtualization and SDN solutions are here today and ready for production deployments. Integrating them into today's enterprise data centers and SMB environments will establish a foundation for a more efficient, optimized and manageable network over the long term.

More Stories By Richard Platt

Richard Platt is CTO and vice president of engineering at Netsocket, where he is responsible for establishing the company’s technical vision and leading all aspects of its technology development. He has over 25 years experience defining, developing, and commercializing emerging technologies in both start-up and Fortune 100 environments.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Code Halos - aka "digital fingerprints" - are the key organizing principle to understand a) how dumb things become smart and b) how to monetize this dynamic. In his session at @ThingsExpo, Robert Brown, AVP, Center for the Future of Work at Cognizant Technology Solutions, outlined research, analysis and recommendations from his recently published book on this phenomena on the way leading edge organizations like GE and Disney are unlocking the Internet of Things opportunity and what steps your organization should be taking to position itself for the next platform of digital competition.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...
Dale Kim is the Director of Industry Solutions at MapR. His background includes a variety of technical and management roles at information technology companies. While his experience includes work with relational databases, much of his career pertains to non-relational data in the areas of search, content management, and NoSQL, and includes senior roles in technical marketing, sales engineering, and support engineering. Dale holds an MBA from Santa Clara University, and a BA in Computer Science from the University of California, Berkeley.
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness, and in-car entertainment and this excitement will bleed into other areas. On the commercial side, m...
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
“With easy-to-use SDKs for Atmel’s platforms, IoT developers can now reap the benefits of realtime communication, and bypass the security pitfalls and configuration complexities that put IoT deployments at risk,” said Todd Greene, founder & CEO of PubNub. PubNub will team with Atmel at CES 2015 to launch full SDK support for Atmel’s MCU, MPU, and Wireless SoC platforms. Atmel developers now have access to PubNub’s secure Publish/Subscribe messaging with guaranteed ¼ second latencies across PubNub’s 14 global points-of-presence. PubNub delivers secure communication through firewalls, proxy ser...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...