Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Derek Weeks, Pat Romanski, Karthick Viswanathan

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Cloud Security, @DXWorldExpo, SDN Journal

@CloudExpo: Blog Post

Traffic Advisory: Your Packets May Be Delayed

The past few years have seen a dramatic improvement in the latency in network switches

The past few years have seen a dramatic improvement in the latency in network switches. Single ASIC based switches can all pretty much switch packets in less than a microsecond. Current 10GE switching silicon provides anywhere from 300 to 800 nanoseconds, specialized silicon shaves that to less than 200 nanoseconds when limiting the amount of searching that needs to be done by reducing the size of lookup tables. Even other solutions play some smart tricks by providing forwarding hints for intermediate switches make those lookups take less than 50 nanoseconds.

Notice_Reduce_Speed_When_Entering_Parking_Lot_Signs_T41151-ba

Modular switches inherently have a higher latency. Line cards on modular switches typically have multiple ASICs, those ASICs are connected through a single or multi stage fabric. Each step takes time, resulting in latencies varying from around a microsecond when a packet stays on the same ASIC, to possibly 5-15 microseconds when a packet needs to travel through the fabric and back.

The speediest of ASICs achieve these low numbers by employing cut through switching. Cut through switching allows the ASIC to start transmitting a packet when enough of the header has been received to make a forwarding decision. The ASIC does not wait for the entire packet to be received (the more traditional store-and-forward mechanism), within the first few 100 bytes the forwarding decision has been made, and that same header (modified or not) is being transmitted out the destination port. It's somewhat odd to think that through, but the first bits of a packet may be received by the destination system before the last bits have left the first switch in the network.

Cut through switching comes with quite a few "buts". Most switches can only deploy cut through switching when the source and destination port are the same speed. 10GE in and 40GE out or vice versa is rarely supported and the ASIC will automatically switch to store-and-forward for those packets. For good reason. If a packet comes at you at 40GE rates, you simply cannot transmit it out a 10GE interface, that interface is not fast enough. In the reverse direction speed is not the issue, but if you were to employ cut through switching, for the duration of that packet your 40GE interface effectively runs at 10GE with lots of pauses in between pieces of a packet (figuratively speaking).

In addition, when the destination port has another packet being transmitted or in the queue, a new packet cannot be sent cut through. When another packet is ahead of you, you need to wait. And you may need to wait for quite a while. We often forget that it takes 1.2 microseconds to transmit a 1500 byte packet on a 10GE interface, more than 7 microseconds for a jumbo packet. When the destination port is being paused due to Data Center Bridging Priority Flow Control (PFC), the packet will be queued for store and forward. And make sure you add an extra 3 microseconds for 10GBASE-TX.

Datacenters are on a path to fewer layers of switching. Spine and leaf networks are being pitched as the best performing, low cost solution for dense networks. If you carefully examine the specs and pitches of some of the newer spine switches, you will notice that all of them make a case for deep buffers. Deep buffers assume that this switch needs to manage congestion by buffering packets, why else would you design expensive and power hungry buffer memory into those switches. Buffering and low latency don't go well together. If your spine and leaf network has nothing much to do, you may well see latency numbers of only a few microseconds or better. If the spine layer needs to buffer your packet, this number can jump up quickly to 10s of microseconds. And those large buffers seem to suggest it will.

There certainly are applications that are very sensitive to latency. Financial institution low latency trading networks are the example always used, and there are High Performance Computing environments with database, RDMI or similar applications that benefit from really low latency. Engineering the traffic in such a way that none of the low latency disruptive events described above happen is hard. Really hard. Extremely hard if there is a lot of traffic. Or a lot of endpoints. Networks that are specifically designed to aggregate and distribute (spine and leaf) will be more prone to these latency increasing scenarios. Creating a network with the ability to create isolated direct paths between switches that serve low latency applications is much more likely to avoid these. And even if the absolute latency is not the lowest, consistent latency with little jitter will certainly help the performance of adaptive mechanisms like TCP.

For the vast majority of applications in a typical enterprise datacenter, or a public cloud provider, the difference between 200 nanosecond switch latency and 1 microseconds is not measurably different in terms of user or application performance. The set of applications that behave noticably different at a few microseconds vs 10s of microseconds end to end latency is probably larger. I argue that you will get better results by carefully engineering the traffic for the applications that do care about low latency and low jitter. Make sure they get the bandwidth they need. Make sure they do not clash in the network with data hungry applications. Affinitize your network. It may just give you the latency and jitter performance you need.

The post Traffic advisory: your packets may be delayed appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@MicroservicesExpo Stories
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Admiral Calcote - also known as Lee Calcote (@lcalcote) or the Ginger Geek to his friends - gave a presentation entitled Characterizing and Contrasting Container Orchestrators at the 2016 All Day DevOps conference. Okay, he isn't really an admiral - nor does anyone call him that - but he used the title admiral to describe what container orchestrators do, relating it to an admiral directing a fleet of container ships. You could also say that they are like the conductor of an orchestra, directing...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
Many IT organizations have come to learn that leveraging cloud infrastructure is not just unavoidable, it’s one of the most effective paths for IT organizations to become more responsive to business needs. Yet with the cloud comes new challenges, including minimizing downtime, decreasing the cost of operations, and preventing employee burnout to name a few. As companies migrate their processes and procedures to their new reality of a cloud-based infrastructure, an incident management solution...
Gaining visibility in today’s sprawling cloud infrastructure is complex and laborious, involving drilling down into tools offered by various cloud services providers. Enterprise IT organizations need smarter and effective tools at their disposal in order to address this pertinent problem. Gaining a 360 - degree view of the cloud costs requires collection and analysis of the cost data across all cloud infrastructures used inside an enterprise.
Our work, both with clients and with tools, has lead us to wonder how it is that organizations are handling compliance issues in the cloud. The big cloud vendors offer compliance for their infrastructure, but the shared responsibility model requires that you take certain steps to meet compliance requirements. Which lead us to start poking around a little more. We wanted to get a picture of what was available, and how it was being used. There is a lot of fluidity in this space, as in all things ...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Recent survey done across top 500 fortune companies shows almost 70% of the CIO have either heard about IAC from their infrastructure head or they are on their way to implement IAC. Yet if you look under the hood while some level of automation has been done, most of the infrastructure is still managed in much tradition/legacy way. So, what is Infrastructure as Code? how do you determine if your IT infrastructure is truly automated?
Every few years, a disruptive force comes along that prompts us to reframe our understanding of what something means, or how it works. For years, the notion of what a computer is and how you make one went pretty much unchallenged. Then virtualization came along, followed by cloud computing, and most recently containers. Suddenly the old rules no longer seemed to apply, or at least they didn’t always apply. These disruptors made us reconsider our IT worldview.