Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Java IoT, Industrial IoT, Microservices Expo, IBM Cloud, Weblogic, Machine Learning

Java IoT: Article

Component Models in Java | Part 1

Component-oriented programming is a preferred solution to address the increasing complexity in developing software applications

A component is a reusable software entity. A component is a deployable piece of software that can be independently developed and maintained. In the previous article -Componentizing a Monolithic Application in Java, we discussed the need for componentizing applications to get the benefits of reusability and modularity. We also looked at how an E-Store application can be componentized using a simple component model developed by the authors using a factory whiteboard pattern and a simple repository.

In Part 1 of this article we will try to understand various component models in Java and provide a brief comparison of the features provided by them. Traditionally to explain component-based software engineering (CBSE) principles, popular component frameworks like CORBA, DCOM and JavaBeans are used. Instead of this traditional approach, this article will focus on the latest and widely adopted component models and frameworks specific to Java platform such as Enterprise JavaBeans Component Model (EJB), OSGi Component Model (OSGi), Spring Component Model (spring) and Component Model using Service Component Architecture (SCA).

In this article, first an introduction of component is given and types of components are explained and then the four component models are discussed in brief. At the end, a summary of the four component models is given.

Understanding Components
Component-oriented programming is a preferred solution to address the increasing complexity in developing software applications. Component oriented development has many advantages. Typically a component is accessed using an interface that is provided by the component. A component can also depend on other interfaces provided by other components for fulfilling the functionality. Components are developed, assembled and composed with the help of a standardized component model. Each component model has its own standards for development and composition. These component models provide are accompanied by component framework which provides the runtime environment where these components are executed.

Components can be classified into different types depending on where and how they are used. We try to classify the components into the following types based on their usage in N-tier architecture.

  • UI Components
    • Reusable components created for User Interface in applications. These components typically represent UI elements like form control - text field, radio button, data grid, table etc. used for managing the presentation tier of the application.
  • Business Components
    • Reusable components that contain the business logic of the application. The components are usually POJO based, developed and deployed according to a standardized component model. The model also provides the environment for execution of these components.
  • Persistence Components
    • Reusable components used in the persistence tier of an enterprise application. These components typically help in managing the persistence between the enterprise application and the data store.
  • Application Services Components
    • Reusable components which perform services like security, infrastructure management, transaction and validation for the application. These components are used along with the business components since they provide the application services required for the business components.

There are several models and frameworks available to develop each type of component. The focus of this article is on the business components; we will try to understand how the business components can be developed using the following standardized, matured and popularly used component models:

  • Enterprise JavaBeans (EJB)
  • Spring
  • OSGi
  • Service Component Architecture (SCA)

The objective is to give an introduction of these component models from the perspective of component principles and to understand the features provided by each of them. This article does not delve much into the details of the component models.

Enterprise JavaBeans Component Model
Enterprise JavaBeans (EJB) is a component model that is significant part of the Java Platform, Enterprise Edition. This is a standard from the JCP (Java Community Process) for representing business components in an n-tier enterprise application. Enterprise JavaBeans are distributed business components that contain the business logic of the enterprise application. The first release of the standard is EJB version 1.0. Much has changed in the EJB standard from its version 3.0. EJB has become truly lightweight, POJO based component model from EJB 3.0. This article will focus on the features of EJB with reference to EJB 3.0 specification. The classes and interfaces required for developing the components as per the model are packaged in EJB API.

An Enterprise JavaBeans component is a combination of an interface referred to as business interface and a class (POJO) containing the implementation for the interface referred to as EJB component.

Business Interface
The business interface of an EJB is a Plain Old Java Interface (POJI). The business interface for the enterprise bean contains the signature of the business methods. Business interface is the component interface which is exposed to the clients. The Enterprise JavaBeans model supports both local invocation and distributed invocation. So the component interface (business interface) can be used for local invocation and remote invocation.

EJB Component
The EJB component implements the business interface and contains the implementation of the methods in the business interface. The EJB component is used for the implementation of the business logic of the enterprise application and is available in the following types:

  • Stateless Session Bean
  • Stateful Session Bean
  • Singleton Session Bean
  • Message Driven Bean

Stateless session bean represents the business component which has no conversational state with the client. Stateless session bean components are not shared between clients. They are used for single method request/response communication between client and the component.

Stateful session bean is a business component that contains the conversational state for a single client. The conversational state of the component is maintained ONLY for a single client.

Singleton session bean is a new type of business component introduced from the recent specification of EJB. This is a business component which is shared between clients and supports concurrent access.

Message driven beans are business components that are designed to consume messages from messaging systems like Java Message Service (JMS). Message driven beans enable asynchronous communication and they get activated upon message arrival.

The types of beans are identified using metadata annotation in the source code or through the XML deployment descriptor. All the types of EJB components are POJO based and the following annotations are used:

  • @Stateless
  • @Stateful
  • @Singleton
  • @MessageDriven

EJB Container
Components are typically deployed into the container that provides runtime and services for them. The EJB component and the business interface are packaged into a JAR file and deployed in an EJB container. EJB containers manage the life cycle of the EJB components. Typically clients trying to access the component cannot create an object of the EJB directly, rather it gets a reference to the object created by the container. Containers are rich in features and provide all the services required for the components. The container acts as a registry having references of all components deployed in it.

Component Reference
Clients accessing EJB components (except Message Driven Beans) can be a remote client or local clients. A remote client is the one that accesses EJB components using remote protocol like RMI or IIOP. A local client is the one that accesses EJB components from the same JVM where the component is running.

Like any other component model, the EJB beans are not instantiated directly using the ‘new' operator. For accessing EJB components, dependency injection is used for getting a reference to the component deployed in the container. Dependency injection is based on the principles of ‘Inversion of Control.' The idea is to avoid the direct creation of objects using a ‘new' operator on the server-side Java. Dependency injection for EJB components is provided with the help of metadata annotation @EJB. The annotation @EJB specifies a reference to the business interface. When this annotation is used, the container will provide a reference of the component to the clients. A local client for EJB simply uses the @EJB to get a reference to the component.

A remote client for EJB, where injection is not possible has an alternate way of accessing EJB components. They have to use JNDI (Java Naming and Directory Interface) API for locating the components in the container with a string name usually called as JNDI name. The container will provide the reference of the component which will be used by the clients.

A Message Driven Bean can't be accessed by clients directly because they are asynchronous message listeners. This is a type of EJB component that is activated by the arrival of a message in a message destination. So clients cannot invoke any of the methods in the message driven bean.

Example to Understand EJB Component Model
The EJB component model discussed above can be understood with a simple example. Let us take the example of a Cart component used in online shopping. The Cart component has several methods like addItem, listItems, getTotalPrice and clearCart which helps to add items to the cart, list the items in the cart, get the total price of the components in the cart and clear the cart contents.

Note:  For benefit of those readers who read our earlier article on Componentizing Monolithic Application in Java, this is the same ShoppingCart component discussed in the article with little modifications. For simplicity, only a single component - Cart is used for demonstration purposes in this article.

Figure 1 - EJB Component Model - Cart Component Example

The business interface of the component in EJB model is a remote interface called ‘CartBeanRemote'.

package com.online.shopping;

import java.util.Collection;
import javax.ejb.Remote;

@Remote
public interface CartBeanRemote {
public void addItem(Product product, int quantity);
public Collection<Product> listItems();    
public double getTotalPrice();
public void clearCart();   
}

The business interface is implemented as a Stateful session EJB component ‘CartBean' because the component has to maintain the conversational state across method invocations for the client.

package com.online.shopping;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import javax.ejb.Stateful;

@Stateful
public class CartBean implements CartBeanRemote {
Map<Product, Integer> items = new HashMap<Product, Integer>();      

@Override
public Collection<Product> listItems() {
HashSet<Product> contents = new HashSet<Product>();
Set<Product> set = items.keySet();
Iterator<Product> iterator = set.iterator();
while(iterator.hasNext()) {
contents.add(iterator.next());
}
return contents;
}  

@Override
public void addItem(Product product, int quantity) {
if(items.containsKey(product)) {
quantity +=items.get(product);
}
items.put(product, quantity);
}

@Override
public void clearCart() {
items.clear();
}

@Override
public double getTotalPrice() {
double totalPrice = 0;
for(Product product: items.keySet()) {
totalPrice+=product.getPrice()* items.get(product);           
}
return totalPrice;
}

}

The Stateful session bean is accessed by the client using a dependency injection @EJB annotation. The client need not create an object of the bean; rather the container will give the reference of the bean instance. Since this is a Stateful session bean, the bean maintains the conversational state of this client. The EJB component is stored internally in the container with a global JNDI name which by default is the name of the business interface-cartBeanRemote. Optionally the JNDI name can be specified as part of the @Stateful annotation. The container will look up internally for the bean with the global JNDI name (cartBeanRemote in this case) and a reference is injected into the business interface which is used by the client. The client is as simple as shown below.

package shoppingcartclient;

import com.online.shopping.CartBeanRemote;
import com.online.shopping.Product;
import java.util.Collection;
import javax.ejb.EJB;

public class ClientApp {

@EJB
private static CartBeanRemote cartBeanRemote;

public static void main(String[] args) {      

Product product = new Product();
product.setName("OSGi");
product.setPrice(550.00);
cartBeanRemote.addItem(product, 10);

Product newProduct = new Product();
newProduct.setName("EJB");
newProduct.setPrice(500.00);
cartBeanRemote.addItem(newProduct, 20);

Collection<Product> productItems = cartBeanRemote.listItems();
for(Product items: productItems) {
System.out.println(items.getName()+"******"+ items.getPrice());             
}            

System.out.println("Total Price of Cart Items: "+cartBeanRemote.getTotalPrice());

cartBeanRemote.clearCart();  

}
}

An alternative to the dependency injection as mentioned earlier, the JNDI API can be used to locate the business interface and the bean can be accessed using that. This is how the standardized EJB component Model simplifies the development, deployment and accessing of the components which is really a complex task without the model.

Spring Component Model
Spring is the most popular open source framework for building end-to-end enterprise applications in Java. Spring brings in greatest benefits like lightweight and modularity. This is achieved with the help of componentization of the framework. The Spring framework was initially written by Rod Johnson and was first released in the year June 2003. Spring components are POJO based and the benefit here is that the Spring components do not need heavyweight containers, only lightweight web containers (Servlet Containers...) are sufficient.

Spring is popular because of its support for Inversion of Control (IoC) features in the form of a Dependency Injection. As discussed earlier, dependency injection is the simplest form of representation of dependency between two classes without creating an object of the class using ‘new' operator. Dependency injection is the heart of the Spring framework. Apart from dependency injection, Spring framework provides support for AOP (Aspect Oriented Programming) as well. Spring framework provides the required APIs for development and deployment of the components.

Spring is slightly different component model from others in the fact that there is no concept of interface available directly to expose component methods. The component itself is used directly, without violating the component principles. Spring framework comprises of Spring Beans (the ‘Component') which is a POJO which is deployed and instantiated in a container called Spring Container which instantiates the bean components using a configuration file -XML file.

Spring Container
The Spring container is the core of the Spring framework. The container takes the responsibility of creating objects, configuring properties of objects, wiring them together and completely managing the life cycle of objects from its creation till destruction. The container completely depends on the configuration file which is XML file to perform any operations on the object.

Spring Container is built on the principles of IoC. The container uses dependency injection to manage the components deployed in them. The components are referred as Spring beans. The Spring container is of two types:

  • Spring BeanFactory Container
  • Spring ApplicationContext Container

The Spring BeanFactory container is the simplest container, an implementation of the Factory design pattern that provides the basic support for dependency injection and is defined by an interface called ‘BeanFactory' interface in the Spring API. Spring ApplicationContext container is an enhanced one which includes all the functionality provided by the BeanFactory container and provides additional features required for enterprise functionality. Hence for simple, lightweight applications, BeanFactory container is used whereas ApplicationContext container is the most preferred one.

The ApplicationContext container is advanced and is used for loading the bean definitions from the configuration file. This container provides several ways to load the configuration file. It allows loading XML file from a file system through FileSystemXmlApplicationContext, from the CLASSPATH using ClassPathXmlApplicationContext and from a web application through WebXmlApplicationContext. These contexts are crucial in instantiation of a bean.

Spring Beans
Spring Beans are the components that contain the business logic in the Spring framework. They are developed and deployed in the spring container which manages the life cycle of the beans. The instantiation of beans is managed by the container with the help of configuration file. Spring Beans are POJOs and are categorized into two types only at the time of instantiation:

  • Singleton
  • Prototype

If Singleton, only one single instance of the bean is created per Spring container. The single instance is cached and used for subsequent requests. If Prototype, instances can be created in any number based on the requests. By default, the spring bean is Singleton in nature. The type of the bean to be instantiated is decided by the entry in the configuration XML file.

Spring Configuration
Spring configuration is an XML file that is popularly known as a Bean Configuration file. This configuration file can have any name, but is usually referred to as ‘Beans.xml' and is critical in managing bean instances. Spring container loads the XML file and manages the beans referred in the file. Actually Spring provides three ways of configuration as mentioned below:

  • XML-based configuration file
  • Annotation based configuration
  • Java-based configuration

However the XML-based configuration file is commonly used. The XML file contains the configuration metadata that is used by the container for creating a bean instance, managing bean's lifecycle methods and bean's dependencies. Some of the important metadata that goes as part of the configuration file are listed below:

  • id - Id for the bean
  • class - Specified the bean class
  • name - Id for the bean by a name
  • scope - Scope of the bean objects - singleton, prototype, request, session
  • lazy-init - Bean will be initialized only during the first request
  • init-method - Method invoked after initialization of the bean
  • destroy-method - Method invoked before the destruction of the bean instance
  • constructor-arg - Used for injecting dependencies
  • properties - Used for injecting dependencies
  • autowire - Used for injecting dependencies

Example to Understand Spring Component Model
The Spring Component model can be understood with the same shopping Cart example discussed in the EJB component model.

Figure 2 - Spring Component Model - Cart Component Example

The CartBean is a POJO with the same methods discussed earlier. The spring bean need not implement any interfaces.

package com.online.shopping;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

public class CartBean {
Map<Product, Integer> items = new HashMap<Product, Integer>();

public Collection<Product> listItems() {       
return items.keySet();
}

public void addItem(Product product, int quantity) {
if (items.containsKey(product)) {
quantity += items.get(product);
}
items.put(product, quantity);
}

public void clearCart() {
items.clear();
}

public double getTotalPrice() {
double totalPrice = 0;
for (Product product : items.keySet()) {
totalPrice += product.getPrice() * items.get(product);
}
return totalPrice;
}
}

The configuration file which is an XML file for the CartBean is referred as ‘Beans.xml'.  The XML file is placed under the source folder of the project. As mentioned earlier, the XML file is used for uniquely identifying beans and creation of objects. When the Spring application is loaded in the memory, the XML file is read first and the container uses this configuration file to create all the required beans and assigns id as per the tags present the configuration file. The XML file used in this example is mentioned below. The ‘CartBean' is assigned a unique id ‘cartBean'. Every bean is loaded and identified using the <bean> tag in the XML file and this tag can have child tags like <property>.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="cartBean" class="com.online.shopping.CartBean" />

</beans>

To access the CartBean, the id of the bean and the context should be available for the client programs. First, the client tries to create an application context appropriately (File or ClassPath or Web). In this example, the client uses ClassPathXmlApplicationContext API that helps in loading the ‘Beans.xml' from the CLASSPATH (the XML file must be available in the CLASSPATH) and based on the information available in the configuration file, the container takes the responsibility of creating and initializing the beans, cartBean in this case.  The context plays an important role to get the reference of the bean since there is no interface. The bean reference is obtained using getBean() method of the context object.

package com.shopping.client;

import java.util.Collection;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import com.online.shopping.CartBean;
import com.online.shopping.Product;

public class ClientApp {

/**
* @param args
*/
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
CartBean cartBean = (CartBean) context.getBean("cartBean");

Product product = new Product();
product.setName("OSGi");
product.setPrice(550.00);
cartBean.addItem(product, 10);

Product newProduct = new Product();
newProduct.setName("Spring");
newProduct.setPrice(550.00);
cartBean.addItem(newProduct, 10);

Collection<Product> productItems = cartBean.listItems();
for(Product items: productItems) {
System.out.println(items.getName()+"******"+ items.getPrice());             
}            

System.out.println("Total Price of Cart Items: "+cartBean.getTotalPrice());

cartBean.clearCart();
}

}

Thus, Spring framework provides a simplified way to create components with the help of Spring factory, configuration XML file and the Spring container. Developing components has really become easy with the help of the Spring framework.

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By S Sangeetha

S Sangeetha is a Senior Technical Architect at the E-Commerce Research Labs at Infosys Limited. She has over 15 years of experience in architecture, design and development of enterprise Java applications. She is also involved in enhancing the technical skills of Architects at Infosys. She has co-authored a book on ‘J2EE Architecture’ and also has written numerous articles on Java for various online Java forums like JavaWorld, java.net, DevX.com and internet.com. She can be reached at [email protected]

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.