Click here to close now.

Welcome!

@MicroservicesE Blog Authors: Elizabeth White, Pat Romanski, Lori MacVittie, Liz McMillan, Cloud Best Practices Network

Related Topics: @CloudExpo Blog, @MicroservicesE Blog, Microsoft Cloud, @ContainersExpo, IoT User Interface, @BigDataExpo Blog, SDN Journal

@CloudExpo Blog: Blog Feed Post

Is Cloud Built to Fail or Built to Scale?

The difference matters. A lot.

There's been a growing focus on scalability as the Internet of Things has continued its rapid growth. Perhaps due in part to large online failures during periodic or individual events, perhaps due in part to simple growth, the reason is less important than the reality that scalability is a critical technological driver for a variety of new technologies - cloud and SDN being the most often referenced.

But while we've been focusing on scalability we may have been overlooking the related and no less important availability factor. These two "itys" are related, as scalability is one way to achieve availability when dealing with growth, rapid or otherwise. But availability also means being sensitive to failure.

Cloud, in general, is designed for scalability. It is specifically architected to provide elasticity - which is scalability both in and out. Cloud is designed to enable resource growth and contraction to match demand.

In this way, cloud addresses one aspect of availability: capacity. But it does not always address the other aspect - failure. Cloud is built to scale, not necessarily fail.

The Many Faces of Availability

Availability and scale are both achieved primarily through the same mechanisms in both data centers and cloud environments (and SDN network fabrics, for that matter): load balancing. At the network layer we've seen techniques like link aggregation (trunking, teaming, bundling) to both manage both scale and fail. Multiple network links are bound together, usually using an established network protocol, and traffic is distributed via load balancing across those links.

Similarly, the same techniques are used at the application layers (layers 4-7) to provide the same measure of scalability and resilience to failure at the server and application layer. Multiple resources are bound together, usually using a concept known as a virtual server (or virtual IP address) in a load balancing service and then requests are distributed via load balancing across those resources.

In this way, scalability is achieved. As demand grows, resources are transparently added to increase capacity. Similarly, as demand contracts, resources can be transparently decommissioned to decrease capacity. Voila! Elasticity.

But failure, the other and lesser mentioned aspect impacting availability, is not so easily managed.

The Impact of Failure

In the case of the network, the failure of a single link in an aggregated bundle (or trunk) is handled by simply ignoring the failed link. All traffic is distributed across the remaining links, every packet is pushed, and availability is maintained. Except when it isn't because of oversubscription or congestion that results in excessive latencies that cause delays ultimately resulting in poor application performance. While in the purest sense of the word "available" the application is still accessible, most businesses today consider unresponsive or poorly performing applications to be "unavailable", especially when those applications are revenue generating.

At the application layers, failure is even more detrimental to availability. Oversubscription of an application due to failure of resources often results in true downtime; errors or timeouts that prevent the end-user from accessing the application at all. Worse, users that were active may suddenly find they have "lost" their connection as well as any work they may have been doing before the resource was lost.

Load balancing architectures compensate, of course, by directing those users to other application instances. Cloud environments imbued with auto-scaling capabilities may be able to redress the failure by provisioning a new instance to take its place and thus maintain the proper levels of capacity. But that does not mitigate the loss of productivity and access experienced due to the original failure. It addresses scalability, not availability.

That's because when a failure occurs in most cloud environments, all active sessions to the failed application instance are simply discarded. The users must start anew. The cloud infrastructure fabric will certainly redirect them to a new instance and start a new session (and in this way it will "handle" failure), but this is disruptive to the user; it is noticeable. And noticeable degradations of performance or availability are a no-no for most business stakeholders.

Beware the Long Term

It's not necessarily the immediate reaction that should be of concern, but the long term impact. Everyone cites the data presented by Microsoft, Google, and Shopzilla at Velocity 2009 with respect to the impact of seconds of delay on revenue (spoiler: it's not good) but they tend to ignore the long term impact - the behavioral impact - of such delays and disruption on the end user [emphasis mine]:

Their data showed that slow sites get fewer search queries per user, less revenue per visitor, fewer clicks, fewer searches, and lower search engine rankings. They found that in some cases even after site performance was improved users continued to interact as if it was slow. Bad experiences have a lasting influence on customer behavior.

-- More on how web performance impacts revenue…

Did you catch that? Bad experiences (of which disruption is certainly one, I don't think we need to argue about that, do we?) have a lasting influence on customer behavior.

It's important, therefore, to understand the limitations of the environment in which you are deploying an application - particularly one that is customer-facing. Understanding that cloud is built to scale - not fail - is a key piece of knowledge you need to make decisions regarding which applications and workloads are fit for migration to the cloud, and which may be a fit if they are re-architected to address such failure themselves.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@MicroservicesExpo Stories
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at DevOps Summit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction. ...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
Many people recognize DevOps as an enormous benefit – faster application deployment, automated toolchains, support of more granular updates, better cooperation across groups. However, less appreciated is the journey enterprise IT groups need to make to achieve this outcome. The plain fact is that established IT processes reflect a very different set of goals: stability, infrequent change, hands-on administration, and alignment with ITIL. So how does an enterprise IT organization implement change...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Mashape is bringing real-time analytics to microservices with the release of Mashape Analytics. First built internally to analyze the performance of more than 13,000 APIs served by the mashape.com marketplace, this new tool provides developers with robust visibility into their APIs and how they function within microservices. A purpose-built, open analytics platform designed specifically for APIs and microservices architectures, Mashape Analytics also lets developers and DevOps teams understand w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud envir...
Sumo Logic has announced comprehensive analytics capabilities for organizations embracing DevOps practices, microservices architectures and containers to build applications. As application architectures evolve toward microservices, containers continue to gain traction for providing the ideal environment to build, deploy and operate these applications across distributed systems. The volume and complexity of data generated by these environments make monitoring and troubleshooting an enormous chall...
Containers and Docker are all the rage these days. In fact, containers — with Docker as the leading container implementation — have changed how we deploy systems, especially those comprised of microservices. Despite all the buzz, however, Docker and other containers are still relatively new and not yet mainstream. That being said, even early Docker adopters need a good monitoring tool, so last month we added Docker monitoring to SPM. We built it on top of spm-agent – the extensible framework f...
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.