Welcome!

Microservices Expo Authors: Pat Romanski, Liz McMillan, Stackify Blog, Elizabeth White, Dalibor Siroky

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Containers Expo Blog, Agile Computing, @DXWorldExpo, SDN Journal

@CloudExpo: Article

Best Practices for Amazon Redshift

Data Warehouse Analytics as a Service

Data Warehouse as a Service
Recently Amazon announced the availability of Redshift Data warehouse as a Service as a beta offering. Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It's optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Architecture Behind Redshift
Any data warehouse service meant to serve data of petabyte scale should have a robust architecture as its backbone. The following are the salient features of Redshift service.

  • Shared Nothing Architecture: As indicated in one of my earlier articles, Cloud Database Scale Out Using Shared Nothing Architecture, the shared nothing architectural pattern is the most desired for databases of this scale and the same concept is adhered to in Redshift. The core component of Redshift is a cluster and each cluster consists of multiple compute nodes, each node has its dedicated storage following the shared nothing principle.
  • Massively Parallel Processing (MPP): Hand in hand with the shared nothing pattern MPP provides horizontal scale out capabilities for large data warehouses rather than scaling up the individual servers. Massively parallel processing (MPP) enables fast execution of the most complex queries operating on large amounts of data. Multiple compute nodes handle all query processing leading up to the final result aggregation, with each core of each node executing the same compiled query segments on portions of the entire data. With the concept of NodeSlices Redshift has taken the MPP to the next level to the cores of a compute node. A compute node is partitioned into slices; one slice for each core of the node's multi-core processor. Each slice is allocated a portion of the node's memory and disk space, where it processes a portion of the workload assigned to the node.

Refer to the following diagram from AWS Documentation, about Data warehouse system architecture

  • Columnar Data Storage: Storing database table information in a columnar fashion reduces the number of disk I/O requests and reduces the amount of data you need to load from disk. Columnar storage for database tables drastically reduces the overall disk I/O requirements and is an important factor in optimizing analytic query performance.
  • Leader Node: The leader node manages most communications with client programs and all communication with compute nodes. It parses and develops execution plans to carry out database operations, in particular, the series of steps necessary to obtain results for complex queries. Based on the execution plan, the leader node distributes compiled code to the compute nodes and assigns a portion of the data to each compute node.
  • High Speed Network Connect: The clusters are connected internally by a 10 Gigabit Ethernet network, providing very fast communication between the leader node and the compute clusters.

Best Practices in Application Design on Redshift
The enablement of Big Data analytics through Redshift has created lot of excitement among the community. The usage of these kinds of alternate approaches to traditional data warehousing will be best in conjunction with the best practices for utilizing the features. The following are some of the best practices that can be considered for the design of applications on Redshift.

1. Collocated Tables: It is good practice to try to avoid sending data between the nodes to satisfy JOIN queries. Colocation between two joined tables occurs when the matching rows of the two tables are stored in the same compute nodes, so that the data need not be sent between nodes.

When you add data to a table, Amazon Redshift distributes the rows in the table to the cluster slices using one of two methods:

  • Even distribution
  • Key distribution

Even distribution is the default distribution method. With even distribution, the leader node spreads data rows across the slices in a round-robin fashion, regardless of the values that exist in any particular column. This approach is a good choice when you don't have a clear option for a distribution key.

If you specify a distribution key when you create a table, the leader node distributes the data rows to the slices based on the values in the distribution key column. Matching values from the distribution key column are stored together.

Colocation is best achieved by choosing the appropriate distribution keys than using the even distribution.

If you frequently join a table, specify the join column as the distribution key. If a table joins with multiple other tables, distribute on the foreign key of the largest dimension that the table joins with. If the dimension tables are filtered as part of the joins, compare the size of the data after filtering when you choose the largest dimension. This ensures that the rows involved with your largest joins will generally be distributed to the same physical nodes. Because local joins avoid data movement, they will perform better than network joins.

2. De-Normalization: In the traditional RDBMS, database storage is optimized by applying the normalization principles such that a particular attribute (column) is associated with one and only entity (Table). However in shared nothing scalable databases like Redshift this technique will not yield the desired results, rather keeping the redundancy of certain columns in the form of de-normalization is very important.

For example, the following query is one of the examples of a high performance query in the Redshift documentation.

SELECT * FROM tab1, tab2

WHERE tab1.key = tab2.key

AND tab1.timestamp > ‘1/1/2013'

AND tab2.timestamp > ‘1/1/2013';

Even if a predicate is already being applied on a table in a join query but transitively applies to another table in the query, it's useful to re-specify the redundant predicate if that other table is also sorted on the column in the predicate. That way, when scanning the other table, Redshift can efficiently skip blocks from that table as well.

By carefully applying de-normalization to bring the required redundancy, Amazon Redshift can perform at its best.

3. Native Parallelism: One of the biggest advantages of a shared nothing MPP architecture is about parallelism. Parallelism is achieved in multiple ways.

  • Inter Node Parallelism: It refers the ability of the database system to break up a query into multiple parts across multiple instances across the cluster.
  • Intra Node Parallelism: Intra node parallelism refers to the ability to break up query into multiple parts within a single compute node.

Typically in MPP architectures, both Inter Node Parallelism and Intra Node Parallelism will be combined and used at the same time to provide dramatic performance gains.

Amazon Redshift provides lot of operations to utilize both Intra Node and Inter Node parallelism.

When you use a COPY command to load data from Amazon S3, first split your data into multiple files instead of loading all the data from a single large file.

The COPY command then loads the data in parallel from multiple files, dividing the workload among the nodes in your cluster. Split your data into files so that the number of files is a multiple of the number of slices in your cluster. That way Amazon Redshift can divide the data evenly among the slices. Name each file with a common prefix. For example, each XL compute node has two slices, and each 8XL compute node has 16 slices. If you have a cluster with two XL nodes, you might split your data into four files named customer_1, customer_2, customer_3, and customer_4. Amazon Redshift does not take file size into account when dividing the workload, so make sure the files are roughly the same size.

Pre-Processing Data: Over the years RDBMS engines take pride of Location Independence. The Codd's 12 rules of the RDBMS states the following:

Rule 8: Physical data independence:

Changes to the physical level (how the data is stored, whether in arrays or linked lists, etc.) must not require a change to an application based on the structure.

However, in the columnar database services like Redshift the physical ordering of data does make major impact to the performance.

Sorting data is a mechanism for optimizing query performance.

When you create a table, you can define one or more of its columns as the sort key. When data is loaded into the table, the values in the sort key column (or columns) are stored on disk in sorted order. Information about sort key columns is passed to the query planner, and the planner uses this information to construct plans that exploit the way that the data is sorted. For example, a merge join, which is often faster than a hash join, is feasible when the data is distributed and presorted on the joining columns.

The VACUUM command also makes sure that new data in tables is fully sorted on disk. Vacuum as often as you need to in order to maintain a consistent query performance.

Summary
Platform as a Service (PaaS) is one of the greatest benefits to the IT community due to the Cloud Delivery Model, and from the beginning of pure play programming models like Windows Azure and Elastic Beanstalk it has moved to high-end services like data warehouse Platform as a Service. As the industry analysts see good adoption of the above service due to the huge cost advantages when compared to the traditional data warehouse platform, the best practices mentioned above will help to achieve the desired level of performance. Detailed documentation is also available on the vendor site in the form of developer and administrator guides.

More Stories By Srinivasan Sundara Rajan

Highly passionate about utilizing Digital Technologies to enable next generation enterprise. Believes in enterprise transformation through the Natives (Cloud Native & Mobile Native).

@MicroservicesExpo Stories
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
It has never been a better time to be a developer! Thanks to cloud computing, deploying our applications is much easier than it used to be. How we deploy our apps continues to evolve thanks to cloud hosting, Platform-as-a-Service (PaaS), and now Function-as-a-Service. FaaS is the concept of serverless computing via serverless architectures. Software developers can leverage this to deploy an individual "function", action, or piece of business logic. They are expected to start within milliseconds...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
From manual human effort the world is slowly paving its way to a new space where most process are getting replaced with tools and systems to improve efficiency and bring down operational costs. Automation is the next big thing and low code platforms are fueling it in a significant way. The Automation era is here. We are in the fast pace of replacing manual human efforts with machines and processes. In the world of Information Technology too, we are linking disparate systems, softwares and tool...
DevOps is good for organizations. According to the soon to be released State of DevOps Report high-performing IT organizations are 2X more likely to exceed profitability, market share, and productivity goals. But how do they do it? How do they use DevOps to drive value and differentiate their companies? We recently sat down with Nicole Forsgren, CEO and Chief Scientist at DORA (DevOps Research and Assessment) and lead investigator for the State of DevOps Report, to discuss the role of measure...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
"As we've gone out into the public cloud we've seen that over time we may have lost a few things - we've lost control, we've given up cost to a certain extent, and then security, flexibility," explained Steve Conner, VP of Sales at Cloudistics,in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
These days, APIs have become an integral part of the digital transformation journey for all enterprises. Every digital innovation story is connected to APIs . But have you ever pondered over to know what are the source of these APIs? Let me explain - APIs sources can be varied, internal or external, solving different purposes, but mostly categorized into the following two categories. Data lakes is a term used to represent disconnected but relevant data that are used by various business units wit...
With continuous delivery (CD) almost always in the spotlight, continuous integration (CI) is often left out in the cold. Indeed, it's been in use for so long and so widely, we often take the model for granted. So what is CI and how can you make the most of it? This blog is intended to answer those questions. Before we step into examining CI, we need to look back. Software developers often work in small teams and modularity, and need to integrate their changes with the rest of the project code b...
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Cloud4U builds software services that help people build DevOps platforms for cloud-based software and using our platform people can draw a picture of the system, network, software," explained Kihyeon Kim, CEO and Head of R&D at Cloud4U, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...