Welcome!

Microservices Expo Authors: AppDynamics Blog, Liz McMillan, Pat Romanski, VictorOps Blog, Derek Weeks

Related Topics: @BigDataExpo, Java IoT, Microservices Expo, Containers Expo Blog, @CloudExpo, SDN Journal

@BigDataExpo: Article

Archiving the Big Data Old Tail

At any point in time, half of your Big Data are more than two years old

Scenario #1: out of the blue, your boss calls, looking for some long-forgotten entry in a spreadsheet from 1989. Where do you look? Or consider scenario #2: said boss calls again, only this time she wants you to analyze customer purchasing behavior...going back to 1980. Similar problem, only instead of finding a single datum, you must find years of ancient information and prepare it for analysis with a modern business intelligence tool.

The answer, of course, is archiving. Fortunately, you (or your predecessor, or predecessor's predecessor) have been archiving important-or potentially important-corporate data since your organization first started using computers back in the 1960s. So all you have to do to keep your boss happy is find the appropriate archives, recover the necessary data, and you're good to go, right?

Not so fast. There are a number of gotchas to this story, some more obvious than others. Cloud to the rescue? Perhaps, but many archiving challenges remain, and the Cloud actually introduces some new speed bumps as well. Now factor in Big Data. Sure, Big Data are big, so archiving Big Data requires a big archive. Lucky you-vendors have already been knocking on your door peddling Big Data archiving solutions. Now can you finally breathe easy? Maybe, maybe not. Here's why.

Archiving: The Long View
So much of our digital lives have taken place over the last twenty years or so that we forget that digital computing dates back to the 1940s-and furthermore, we forget that this sixty-odd year lifetime of the Information Age is really only the first act of perhaps centuries of computing before humankind either evolves past zeroes and ones altogether or kills itself off in the process. Our technologies for archiving information, however, are woefully shortsighted, for several reasons:

  • Hardware obsolescence (three to five years) - Using a hard drive or tape drive for archiving? It won't be long till the hardware is obsolete. You may get more life out of the gear you own, but one it wears out, you'll be stuck. Anyone who archived to laser disk in the 1980s has been down this road.
  • File format obsolescence (five to ten years) - True, today's Office products can probably read that file originally saved in the Microsoft Excel version 1 file format back in the day, but what about those VisiCalc or Lotus 123 files? Tools that will convert such files to their modern equivalents will eventually grow increasingly scarce, and you always risk the possibility that they won't handle the conversion properly, leading to data corruption. If your data are encrypted, then your encryption format falls into the file format obsolescence bucket as well. And what about the programs themselves? From simple spreadsheet formulas to complex legacy spaghetti code, how do you archive algorithms in an obsolescence-proof format?
  • Media obsolescence (ten to fifteen years) - CD-ROMs and digital backup tapes have an expected lifetime. Keeping them cool and dry can extend their life, but actually using them will shorten it. Do you really want to rely upon a fifteen-year-old backup tape for critical information?
  • Computing paradigm obsolescence (fifty years perhaps; it's anybody's guess) - will quantum computing or biological processors or some other futuristic gear drive binary digital technologies into the Stone Age? Only time will tell. But if you are forward thinking enough to archive information for the 22nd century, there's no telling what you'll need to do to maintain the viability of your archives in a post-binary world.

Cloud to the Rescue?
On the surface, letting your Cloud Service Provider (CSP) archive your data solves many of these issues. Not only are the new archiving services like Amazon Glacier impressively cost-effective, but we can feel reasonably comfortable counting on today's CSPs to migrate our data from one hardware/media platform to the next over time as technology advances. So, can Cloud solve all your archiving issues?

At some point the answer may be yes, but Cloud Computing is still far too immature to jump to such a conclusion. Will your CSP still be in business decades from now? As the CSP market undergoes its inevitable consolidation phase, will the new CSP who bought out your old CSP handle your archive properly? Only time will tell.

But even if the CSPs rise to the archiving challenge, you may still have the file format challenge. Sure, archiving those old Lotus 123 files in the Cloud is a piece of cake, but that doesn't mean that your CSP will return them in Excel version 21.3 format ten years hence-an unfortunate and unintentional example of garbage in the Cloud.

The Big Data Old Tail
You might think that the challenges inherent in archiving Big Data are simply a matter of degree: bigger storage for bigger data sets, right? But thinking of Big Data as little more than extra-large data sets misses the big picture of the importance of Big Data.

The point to Big Data is that the indicated data sets continue to grow in size on an ongoing basis, continually pushing the limits of existing technology. The more capacity available for storage and processing, the larger the data sets we end up with. In other words, Big Data are by definition a moving target.

One familiar estimate states that the quantity of data in the world doubles every two years. Your organization's Big Data may grow somewhat faster or slower than this convenient benchmark, but in any case, the point is that Big Data growth is exponential. So, taking the two-year doubling factor as a rule of thumb, we can safely say that at any point in time, half of your Big Data are less than two years old, while the other half of your Big Data are more than two years old. And of course, this ZapFlash is concerned with the older half.

The Big Data archiving challenge, therefore, is breaking down the more-than-two-years-old Big Data sets. Remember that this two-year window is true at any point in time. Thinking about the problem mathematically, then, you can conclude that a quarter of your Big Data are more than four years old, an eighth are more than six years old, etc.

Combine this math with the lesson of the first part of this ZapFlash, and a critical point emerges: byte for byte, the cost of maintaining usable archives increases the older those archives become. And yet, the relative size of those archives is vanishingly small relative to today's and tomorrow's Big Data. Furthermore, this problem will only get worse over time, because the size of the Old Tail continues to grow exponentially.

We call this Big Data archiving problem the Big Data Old Tail. Similar to the Long Tail argument, which focuses on the value inherent in summing up the Long Tail of customer demand for niche products, the Big Data Old Tail focuses on the costs inherent in maintaining archives of increasingly small, yet increasingly costly data as we struggle to deal with older and older information. True, perhaps the fact that the Old Tail data sets from a particular time period are small will compensate for the fact that they are costly to archive, but remember that the Old Tail continues to grow over time. Unless we deal with the Old Tail, it threatens to overwhelm us.

The ZapThink Take
The obvious question that comes to mind is whether we need to save all those old data sets anyway. After all, who cares about, say, purchasing data from 1982? And of course, you may have a business reason for deleting old information. Since information you preserve may be subject to lawsuits or other unpleasantness, you may wish to delete data once it's legal to do so.

Fair enough. But there are perhaps far more examples of Big Data sets that your organization will wish to preserve indefinitely than data sets you're happy to delete. From scientific data to information on market behavior to social trends, the richness of our Big Data do not simply depend on the information from the last year or two or even ten. After all, if we forget the mistakes of the past then we are doomed to repeat them. Crunching today's Big Data can give us business intelligence, but only by crunching yesterday's Big Data as well can we ever expect to glean wisdom from our information.

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@MicroservicesExpo Stories
In a crowded world of popular computer languages, platforms and ecosystems, Node.js is one of the hottest. According to w3techs.com, Node.js usage has gone up 241 percent in the last year alone. Retailers have taken notice and are implementing it on many levels. I am going to share the basics of Node.js, and discuss why retailers are using it to reduce page load times and improve server efficiency. I’ll talk about similar developments such as Docker and microservices, and look at several compani...
As enterprises around the world struggle with their digital transformation efforts, many are finding that innovative digital teams are moving much faster than their hidebound IT organizations. Rather than struggling to convince traditional IT to get with the digital program, executives are taking advice from IT research firm Gartner, and encouraging existing IT to continue in their desultory ways. However, many CIOs are realizing the dangers of following Gartner’s advice. The central challenge ...
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists will dis...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
Many private cloud projects were built to deliver self-service access to development and test resources. While those clouds delivered faster access to resources, they lacked visibility, control and security needed for production deployments. In their session at 18th Cloud Expo, Steve Anderson, Product Manager at BMC Software, and Rick Lefort, Principal Technical Marketing Consultant at BMC Software, will discuss how a cloud designed for production operations not only helps accelerate developer...
Last week I had the pleasure of speaking on a panel at Sapphire Ventures Next-Gen Tech Stack Forum in San Francisco. Obviously, I was excited to join the discussion, but as a participant the event crystallized not only where the larger software development market is relative to microservices, container technologies (like Docker), continuous integration and deployment; but also provided insight into where DevOps is heading in the coming years.
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, will show how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningfu...
Wow, if you ever wanted to learn about Rugged DevOps (some call it DevSecOps), sit down for a spell with Shannon Lietz, Ian Allison and Scott Kennedy from Intuit. We discussed a number of important topics including internal war games, culture hacking, gamification of Rugged DevOps and starting as a small team. There are 100 gold nuggets in this conversation for novices and experts alike.
The notion of customer journeys, of course, are central to the digital marketer’s playbook. Clearly, enterprises should focus their digital efforts on such journeys, as they represent customer interactions over time. But making customer journeys the centerpiece of the enterprise architecture, however, leaves more questions than answers. The challenge arises when EAs consider the context of the customer journey in the overall architecture as well as the architectural elements that make up each...
Admittedly, two years ago I was a bulk contributor to the DevOps noise with conversations rooted in the movement around culture, principles, and goals. And while all of these elements of DevOps environments are important, I’ve found that the biggest challenge now is a lack of understanding as to why DevOps is beneficial. It’s getting the wheels going, or just taking the next step. The best way to start on the road to change is to take a look at the companies that have already made great headway ...
In 2006, Martin Fowler posted his now famous essay on Continuous Integration. Looking back, what seemed revolutionary, radical or just plain crazy is now common, pedestrian and "just what you do." I love it. Back then, building and releasing software was a real pain. Integration was something you did at the end, after code complete, and we didn't know how long it would take. Some people may recall how we, as an industry, spent a massive amount of time integrating code from one team with another...
From the conception of Docker containers to the unfolding microservices revolution we see today, here is a brief history of what I like to call 'containerology'. In 2013, we were solidly in the monolithic application era. I had noticed that a growing amount of effort was going into deploying and configuring applications. As applications had grown in complexity and interdependency over the years, the effort to install and configure them was becoming significant. But the road did not end with a ...
I have an article in the recently released “DZone Guide to Building and Deploying Applications on the Cloud” entitled “Fullstack Engineering in the Age of Hybrid Cloud”. In this article I discuss the need and skills of a Fullstack Engineer with relation to troubleshooting and repairing complex, distributed hybrid cloud applications. My recent experiences with troubleshooting issues with my Docker WordPress container only reinforce the details I wrote about in this piece. Without my comprehensive...
As the software delivery industry continues to evolve and mature, the challenge of managing the growing list of the tools and processes becomes more daunting every day. Today, Application Lifecycle Management (ALM) platforms are proving most valuable by providing the governance, management and coordination for every stage of development, deployment and release. Recently, I spoke with Madison Moore at SD Times about the changing market and where ALM is headed.
The goal of any tech business worth its salt is to provide the best product or service to its clients in the most efficient and cost-effective way possible. This is just as true in the development of software products as it is in other product design services. Microservices, an app architecture style that leans mostly on independent, self-contained programs, are quickly becoming the new norm, so to speak. With this change comes a declining reliance on older SOAs like COBRA, a push toward more s...
Small teams are more effective. The general agreement is that anything from 5 to 12 is the 'right' small. But of course small teams will also have 'small' throughput - relatively speaking. So if your demand is X and the throughput of a small team is X/10, you probably need 10 teams to meet that demand. But more teams also mean more effort to coordinate and align their efforts in the same direction. So, the challenge is how to harness the power of small teams and yet orchestrate multiples of them...
Much of the discussion around cloud DevOps focuses on the speed with which companies need to get new code into production. This focus is important – because in an increasingly digital marketplace, new code enables new value propositions. New code is also often essential for maintaining competitive parity with market innovators. But new code doesn’t just have to deliver the functionality the business requires. It also has to behave well because the behavior of code in the cloud affects performan...
Struggling to keep up with increasing application demand? Learn how Platform as a Service (PaaS) can streamline application development processes and make resource management easy.
If there is anything we have learned by now, is that every business paves their own unique path for releasing software- every pipeline, implementation and practices are a bit different, and DevOps comes in all shapes and sizes. Software delivery practices are often comprised of set of several complementing (or even competing) methodologies – such as leveraging Agile, DevOps and even a mix of ITIL, to create the combination that’s most suitable for your organization and that maximize your busines...
Digital means customer preferences and behavior are driving enterprise technology decisions to be sure, but let’s not forget our employees. After all, when we say customer, we mean customer writ large, including partners, supply chain participants, and yes, those salaried denizens whose daily labor forms the cornerstone of the enterprise. While your customers bask in the warm rays of your digital efforts, are your employees toiling away in the dark recesses of your enterprise, pecking data into...