Welcome!

Microservices Expo Authors: Liz McMillan, Pat Romanski, VictorOps Blog, Derek Weeks, AppDynamics Blog

Related Topics: @CloudExpo, Microservices Expo, Linux Containers, Open Source Cloud, Agile Computing, Cloud Security

@CloudExpo: Article

Open Source PaaS for Parallel Cloud Application Development

Architectural advantages of cross-layer optimized parallel computing PaaS

Improving application program performance will require parallelizing the program execution at ever finer granularity now that the processor clock rates are no longer increasing. However, even in a per-application dedicated computing environment, the parallelization overhead is known to place a limit on how much application on-time throughput performance increase can be achieved via higher levels of parallel processing. The throughput-limiting impact of parallelization overhead will be significantly amplified when executing multiple internally parallelized applications on dynamically shared cloud computing environment, since the allocation of processing resources to instances and tasks of any given application cannot be done in isolation, but instead it needs to be done collectively across all the applications dynamically sharing the given pool of computing resources. There thus is an urgent need to solve this complex challenge of developing internally parallelized programs for dynamic execution on shared cloud computing infrastructure, if we expect to be able scale the performance and capacity of cloud hosted applications going forward.

PaaS Approach for Parallel Cloud Computing Challenges
The Need for Cross-layer Optimized Platform

For effectiveness of a parallel cloud computing platform, what is essential is how well the platform elements perform together, rather than individually. Consequently, the complex, interleaved challenges of parallel cloud application development and execution cannot be solved by any single layer or element of traditional computing architectures alone. Instead, a comprehensive, cross-layer optimized platform architecture is needed.

This new platform architecture will involve a parallel program development environment for producing application executables based on actors that can be efficiently mapped for concurrent execution on processing cores of dynamically shared manycore arrays. In addition, the parallel cloud computing platform will need an execution environment that, besides executing the program instructions on processing cores, takes care of the dynamic parallel execution routines on behalf of the applications, so that the processing cores are used for executing the actual client programs instead of system functions. If the hardware of the manycore processor fabric did not handle the parallel execution routines[1], eventually the system would be just managing itself rather than providing increased user application throughput as the numbers of processing cores and applications and tasks sharing them are scaled up. This difference in enabling application on-time throughput scalability is illustrated at Figures 4 and 5 (in Ch. 3 Architectural Advantages of Cross-layer Optimized Parallel Computing PaaS).

The Platform Architecture
Vision

Figure 1 below illustrates the overall architecture of the envisioned open parallel program development and execution platform as a service (PaaS).

Figure 1: Overview of the parallel cloud computing PaaS

As illustrated in Figure 1, the open parallel computing PaaS has an open-sourced parallel program development environment and a dynamic parallel execution environment. The development environment allows the platform users to produce executables of their application programs that are made of segments (tasks/actors/threads) that can execute concurrently on parallel (incl. pipelined) processing cores. The execution environment provides, besides an array of processing cores for parallel execution of the user program tasks, the capabilities to dynamically map the highest-priority ready application task instances for execution on their assigned cores. While the state (e.g. which application task instance is mapped to any given core of the shared resource pool at any given time) of the execution environment is highly dynamic during the application runtime, in the platform architecture per Figure 1, the execution environment provides for the application programs (and their developers) a virtual static view of it; any given application can assume that each of its task instances is always active and mapped to a virtual static core in an array that is virtually dedicated to that single application. The hardware automated parallel processing runtime routines of the execution environment per Figure 1 hide (to the desired level) the dynamic details of the processing hardware from the applications as well as the development environment software, thereby providing a higher level, simplified abstraction of the execution environment for the software. The raised level of the software-hardware interface per Figure 1 enables greater productivity for both realizing the much needed open, comprehensive parallel programming environment as well as for developing parallelized applications for cloud deployment, as software does not need to be concerned of the dynamic parallel execution details.

Motivation
Importantly, there is the need to coordinate the various development activities concerning parallel programming and cloud computing tools etc. base technologies (e.g. languages, compilers, parallel file systems, data bases, etc.) around a common overall framework so that the individual technology elements work efficiently together, to enable high productivity development of parallelized applications for cloud deployment. ThroughPuter proposes that the elevated level of the interface to the parallel execution environment per the platform architecture of Figure 1 provides a compelling motive for why the software technology development activities for parallel cloud computing should be based on this execution environment model. More specifically, the major reasons for software ecosystem for parallel computing platform to be based on the dynamic parallel execution environment interface standard per figure include:

  1. Greater productivity through less low-level work: The execution environment in the platform architecture per Figure 1 automates dynamic parallel execution routines in (programmable) hardware, providing higher level application development interface for the software of the PaaS.
  2. Higher performance and scalability via eliminating system software overhead by hardware automation of system tasks such as optimally allocating processing core capacity, scheduling and placing application tasks for execution, inter-task communications, billing etc.
  3. Built-in cloud computing security from the hardware level up: unauthorized interactions between different applications simply not enabled in the hardware.
  4. Open source software and open standard interface between development and execution environment: users have full freedom to choose where to host the development environment as well as the parallelized application executables produced by it. Any execution environment implementation complying to the simple, open execution environment interface standard per Figure 1 is a possible hosting option so there is nothing vendor specific about this platform architecture, and users will not suffer from vendor lock-in.

Technical Overview
Application software developers access the envisioned open parallel cloud computing PaaS through its Integrated Development Environment (IDE) to build application software optimized for parallel processing on dynamically shared cloud processors. The IDE provides a web-based program flow chart, code advisor, profiler etc. (GUI) tools to assist and automate parallelizing the users' programs. The IDE also includes the automated back-end development tool chain, incl. compiler, linker and loader programs, for building and executing the user's parallelized application in a processing hardware complying to the discussed execution environment interface standard per Figure 1. The IDE further equips the user application programs with the system software that automates and optimizes the minimal (to none) interactions between the user programs and the hardware operating system of the dynamic parallel execution environment of the parallel cloud computing PaaS[2].

The IDE software can be hosted with the same parallel computing PaaS as the applications it produces. This practice avoids the need for cross-compiling, and enables straightforward and rapid-cycle interactive testing, debugging and optimization of the parallelized application programs, as well as deployment and scaling releases of the user applications.

The software of the parallel cloud computing PaaS is developed and made fully available as an open-source project, and can be integrated with popular open-source IDEs. In essence, this software project is to add the parallel programming development tools to the major open source IDE and PaaS code bases, while utilizing (and further developing) the applicable existing features from them.

The openness of the promoted comprehensive parallel cloud computing PaaS, besides the open-source IDE, is also manifested via the simple, open standard interface between the development and execution environments of the PaaS architecture. This open standard interface enables any user to host the IDE as well as the parallel program executables produced by it anywhere, e.g. at the user premises, or with ThroughPuter or any 3rd party. Alternative I/PaaS providers furthermore are encouraged to support the execution/development environment interface via their respective implementations of either side or both sides of that interface. The customizable, open-source IDE and open-standard interface to the execution environment provides the users and collaborators a flexible and productive way to approach the major, must-solve parallel cloud application development and execution challenge that is facing much of the software industry and its customers.

The efficient dynamic parallel processing features - which will be critically needed as user application throughput requirements begin exceeding what is available from conventional sequential execution models, and as the parallelized applications will be cloud hosted -- of this open-source software based PaaS are delivered by an execution environment that provides the necessary, dynamic parallel execution core to application task instance allocation, task instance to core assignment, and inter-task communication capabilities. These critical parallel execution capabilities are an integrated feature in the ThroughPuter hosted commercial PaaS offering.

For reference on ThroughPuter's implementation of the dynamic parallel execution environment for the open parallel computing PaaS architecture per Figure 1, the below Figure 2 shows ThroughPuter's realtime application load adaptive manycore processor architecture, highlighting its hardware logic automated operating system functionality enabling a number of customer application programs to securely, dynamically and cost-efficiently share the processing capacity of the manycore processor hardware.

Figure 2: Reference diagram for ThroughPuter manycore processors with hardware-automated multi-user parallel processing optimized operating system.

ThroughPuter's hardware operating system, manycore fabric memory and I/O subsystems are largely responsible for the architectural security, performance and cost-efficiency benefits of the ThroughPuter PaaS. However, the IDE hides the actual execution environment features from the user; the user does not need to be aware of the novel hardware-implemented capabilities of this dynamic parallel execution environment in order to realize the performance benefits.

A possible core to application task/instance allocation scenario over a few core allocation periods (CAPs) is illustrated in Figure 3 below, along with associated highlights of the feature benefits.

Figure 3: Dynamic core to application task instance assignment scenario in the execution environment of the PaaS per Figure 1.

In reference to the dynamic core assignment scenario per Figure 3, it shall be remembered that in the PaaS architecture per Figure 1, the software does not need to be aware of the dynamic parallel execution matters, but can instead maintain a virtual static view of the execution environment where each possible application task instance is constantly mapped to its virtual dedicated core, thus simplifying both the development environment as well as the application software while improving the development productivity and runtime performance.

Architectural Advantages of Cross-layer Optimized Parallel Computing PaaS
The platform model presented here is crucial for enabling application on-time throughput performance scalability in the age of parallel cloud computing, as illustrated in Figures 4 and 5.

Figure 4: Scalability problem in parallel cloud computing due to the system software overhead.

As illustrated in Figure 4, when relying on system software for managing the parallel execution, there is a limit to scalability of cloud computing platforms in the parallel processing era, as application performance improvement begins requiring ever finer grades of intra-application parallelism (i.e. more tasks and task instances per application). This is due to that the parallel processing system software overhead (the need to dynamically coordinate and manage concurrent tasks and parallel processing resources) increases with the number of applications as well as their tasks and instances, and the number of processing cores being dynamically shared among them. When relying on system software to handle parallel execution routines, the processing capacity of a given manycore processor (array) is split between processing user applications and system software, with the rate of system software increasing with scale, at the expense of the user applications. This causes that after some point, the system-wide application processing on-time throughput (the product of number of cores and the percentage of the cores' processing capacity available for user applications) will begin decreasing as the system is scaled up (by adding processing cores and parallelized applications and their tasks sharing the cores).

To solve this fundamental challenge affecting the scalability of cloud computing in the parallel processing era, the processing hardware needs to raise up to this challenge and handle the parallel processing routines in the hardware of the manycore processors, so that the processing cores will be optimally used for processing the user applications (rather than for processing the system functions, and/or be locked to low utilization due to non-load-adaptive allocation).

The impact of the hardware automation of the parallel processing system functions in the hardware of manycore processors per Figures 1-3 is illustrated in Figure 5 below.

Figure 5: Scalability solution for parallel cloud computing delivered via automating the parallel execution system functions in hardware.

The enabling of scalability of cloud computing platforms and cloud applications' on-time processing throughput in the emerging era of (inter and intra) application parallel processing by the execution environment model per Figure 1 serves as a further compelling reason for concentrating the efforts to address the popular parallel programming challenge via the herein presented open parallel cloud computing platform model. Parties interested in collaboration to realize this much needed comprehensive, open source parallel cloud computing platform can contact ThroughPuter via [email protected].

Further Reading
Relevant further material on the parallel program development and execution challenges is available at:

References:

  1. These include: monitoring application processing load demands, periodically allocating processing resources (cores) among the applications based on their processing load variations and contractual entitlements, prioritizing and selecting application task instances for execution, mapping selected task instances for execution on their assigned cores and accordingly configuring the IO and memory access subsystems, arranging the inter task communications, plus contract billing based on applications' resource entitlement and usage.
  2. These interactions are mainly limited to the application program, via the PaaS tool-generated system software, providing to the hardware operating system of the execution environment (per Figure 1) a listing of its schedulable tasks/instances in their priority order; there is very little overhead in interacting with such hardware operating system. Where applicable, the hardware operating system of the PaaS is able to deduce the processing core demands and task/instance priority orders of the applications by itself by monitoring the input processing data load levels for the applications. This feature, where employed for a given application (or task group), will effectively eliminate all the parallelization system software overhead for the given application (task group).

More Stories By Mark Sandstrom

Mark Sandstrom is the president of ThroughPuter, Inc., developer of dynamic parallel program execution technologies with a business model of PaaS provider. He is an innovator and strategist with experience in the high technology industry since 1995, including at Optimum Communications Services, Inc., Turin Networks, Inc. (acquired by Force 10, then by Dell), Cyras Systems, Inc. (acquired by CIENA) and Tellabs, Inc.

Sandstrom holds an MSEE degree from Helsinki University of Technology and Executive MBA from Golden Gate University, and has been granted sixteen US and UK patents in fields of networking and computing system throughput optimization and management system streamlining.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists will dis...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
Last week I had the pleasure of speaking on a panel at Sapphire Ventures Next-Gen Tech Stack Forum in San Francisco. Obviously, I was excited to join the discussion, but as a participant the event crystallized not only where the larger software development market is relative to microservices, container technologies (like Docker), continuous integration and deployment; but also provided insight into where DevOps is heading in the coming years.
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, will show how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningfu...
Wow, if you ever wanted to learn about Rugged DevOps (some call it DevSecOps), sit down for a spell with Shannon Lietz, Ian Allison and Scott Kennedy from Intuit. We discussed a number of important topics including internal war games, culture hacking, gamification of Rugged DevOps and starting as a small team. There are 100 gold nuggets in this conversation for novices and experts alike.
In a crowded world of popular computer languages, platforms and ecosystems, Node.js is one of the hottest. According to w3techs.com, Node.js usage has gone up 241 percent in the last year alone. Retailers have taken notice and are implementing it on many levels. I am going to share the basics of Node.js, and discuss why retailers are using it to reduce page load times and improve server efficiency. I’ll talk about similar developments such as Docker and microservices, and look at several compani...
The notion of customer journeys, of course, are central to the digital marketer’s playbook. Clearly, enterprises should focus their digital efforts on such journeys, as they represent customer interactions over time. But making customer journeys the centerpiece of the enterprise architecture, however, leaves more questions than answers. The challenge arises when EAs consider the context of the customer journey in the overall architecture as well as the architectural elements that make up each...
Much of the discussion around cloud DevOps focuses on the speed with which companies need to get new code into production. This focus is important – because in an increasingly digital marketplace, new code enables new value propositions. New code is also often essential for maintaining competitive parity with market innovators. But new code doesn’t just have to deliver the functionality the business requires. It also has to behave well because the behavior of code in the cloud affects performan...
Admittedly, two years ago I was a bulk contributor to the DevOps noise with conversations rooted in the movement around culture, principles, and goals. And while all of these elements of DevOps environments are important, I’ve found that the biggest challenge now is a lack of understanding as to why DevOps is beneficial. It’s getting the wheels going, or just taking the next step. The best way to start on the road to change is to take a look at the companies that have already made great headway ...
In 2006, Martin Fowler posted his now famous essay on Continuous Integration. Looking back, what seemed revolutionary, radical or just plain crazy is now common, pedestrian and "just what you do." I love it. Back then, building and releasing software was a real pain. Integration was something you did at the end, after code complete, and we didn't know how long it would take. Some people may recall how we, as an industry, spent a massive amount of time integrating code from one team with another...
Many private cloud projects were built to deliver self-service access to development and test resources. While those clouds delivered faster access to resources, they lacked visibility, control and security needed for production deployments. In their session at 18th Cloud Expo, Steve Anderson, Product Manager at BMC Software, and Rick Lefort, Principal Technical Marketing Consultant at BMC Software, will discuss how a cloud designed for production operations not only helps accelerate developer...
I have an article in the recently released “DZone Guide to Building and Deploying Applications on the Cloud” entitled “Fullstack Engineering in the Age of Hybrid Cloud”. In this article I discuss the need and skills of a Fullstack Engineer with relation to troubleshooting and repairing complex, distributed hybrid cloud applications. My recent experiences with troubleshooting issues with my Docker WordPress container only reinforce the details I wrote about in this piece. Without my comprehensive...
From the conception of Docker containers to the unfolding microservices revolution we see today, here is a brief history of what I like to call 'containerology'. In 2013, we were solidly in the monolithic application era. I had noticed that a growing amount of effort was going into deploying and configuring applications. As applications had grown in complexity and interdependency over the years, the effort to install and configure them was becoming significant. But the road did not end with a ...
Struggling to keep up with increasing application demand? Learn how Platform as a Service (PaaS) can streamline application development processes and make resource management easy.
As the software delivery industry continues to evolve and mature, the challenge of managing the growing list of the tools and processes becomes more daunting every day. Today, Application Lifecycle Management (ALM) platforms are proving most valuable by providing the governance, management and coordination for every stage of development, deployment and release. Recently, I spoke with Madison Moore at SD Times about the changing market and where ALM is headed.
The goal of any tech business worth its salt is to provide the best product or service to its clients in the most efficient and cost-effective way possible. This is just as true in the development of software products as it is in other product design services. Microservices, an app architecture style that leans mostly on independent, self-contained programs, are quickly becoming the new norm, so to speak. With this change comes a declining reliance on older SOAs like COBRA, a push toward more s...
Small teams are more effective. The general agreement is that anything from 5 to 12 is the 'right' small. But of course small teams will also have 'small' throughput - relatively speaking. So if your demand is X and the throughput of a small team is X/10, you probably need 10 teams to meet that demand. But more teams also mean more effort to coordinate and align their efforts in the same direction. So, the challenge is how to harness the power of small teams and yet orchestrate multiples of them...
If there is anything we have learned by now, is that every business paves their own unique path for releasing software- every pipeline, implementation and practices are a bit different, and DevOps comes in all shapes and sizes. Software delivery practices are often comprised of set of several complementing (or even competing) methodologies – such as leveraging Agile, DevOps and even a mix of ITIL, to create the combination that’s most suitable for your organization and that maximize your busines...
Digital means customer preferences and behavior are driving enterprise technology decisions to be sure, but let’s not forget our employees. After all, when we say customer, we mean customer writ large, including partners, supply chain participants, and yes, those salaried denizens whose daily labor forms the cornerstone of the enterprise. While your customers bask in the warm rays of your digital efforts, are your employees toiling away in the dark recesses of your enterprise, pecking data into...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.