Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Aruna Ravichandran, Pat Romanski, Cameron Van Orman

Related Topics: Java IoT, Industrial IoT, Microservices Expo, Machine Learning , Recurring Revenue, Cloud Security

Java IoT: Article

Java Cryptography | Part 2

Encryption and Digital Signatures

In today's environment, information security is crucial for everyone. Security needs vary widely from protecting social security numbers to guarding corporate strategy. Information espionage can occur at all levels. A human resources employee or manager takes employee personnel files home to work on them and unfortunately loses them or they get stolen. An employee's notes to a supervisor regarding a case are intercepted and read via monitoring software by an outside hacker. The resulting damages can be costly and could be avoided by protecting assets with encryption technology.

This article demonstrates the implementation of the Cryptography header cited in the previous article and illustrates how to encrypt and digitally sign files using a hybrid combination of asymmetric public/private key encryption and symmetric encryption. A symmetric key is used to encrypt the file and the asymmetric public key encrypts the symmetric key. The asymmetric private key decrypts the symmetric key which in turn is used to decrypt the encrypted file.

Figure 1. Asymmetric Key Encryption Functions

The same pair of encryption keys can be used with digital signatures. The private key is used to sign a file and generate a digital signature. The public key is used to verify the authenticity of the signature. The encrypted symmetric key and digital signature along with additional information are stored in the Cryptography header which is affixed to the front of the encrypted file.

Figure 2. Asymmetric Key Signature Functions

The encryption technique requires the Java libraries developed by the Legion of the Bouncy Castle (www.bouncycastle.org). The Bouncy Castle jars, bcprov-jdk15on-147.jar and bcpkix-jdk15on-147.jar, contain all the methods required to encrypt, decrypt, sign and verify a digital signature. The following Java code snippet loads the BouncyCastle provider, which implements the Java Cryptography Security services such as algorithms and key generation.

import org.bouncycastle.jce.provider.*;
java.security.Security.addProvider(new BouncyCastleProvider());

Generating Public/Private Encryption Keys
A Java key store is a password protected file that contains the user's pair of asymmetric encryption keys and certificate. Each key store associates a unique alias to each pair of encryption keys it contains. The Java key store file name is generated as alias_nnnn.jks, for example, jxdoe_fc99.jks. Certificates hold the public encryption key that allows a file to be encrypted for a specific individual who holds the matching deciphering key. The following steps along with Java code snippets illustrate how to generate the pair of public/private keys and store them in a key store file, using the Bouncy Castle cryptography library.

Figure 3. Pair of Asymmetric Keys

Step 1: Create an instance of the KeyPairGenerator class specifying the RSA asymmetric algorithm and Bouncy Castle provider. Generate a 1024-bit asymmetric public and private key pair to be stored in a password protected key store file.

//-Generate the pair of Asymmetric Encryption Keys (public/private)
KeyPairGenerator tKPGen = KeyPairGenerator.getInstance("RSA", "BC");
SecureRandom tRandom = new SecureRandom();
tKPGen.initialize(1024, tRandom); //-Key size in bits
KeyPair tPair = tKPGen.generateKeyPair();
PublicKey tUserPubKey = tPair.getPublic();
PrivateKey tUserPrivKey = tPair.getPrivate();

Step 2: Extract four hex digits from the public key to create a unique alias for the filename of the certificate and key store.

KeyFactory tKeyFactory = KeyFactory.getInstance("RSA");
RSAPublicKeySpec tPubSpec =
tKeyFactory.getKeySpec(tUserPubKey, RSAPublicKeySpec.class);
String t4HexDigits = tPubSpec.getModulus().toString(16).substring(8,12);
String tUniqueAlias = "jxdoe_" + t4HexDigits;

Step 3: Create a certificate to hold the asymmetric public key that can be used to encrypt your confidential information or distributed to others for exchanging encrypted files.

JcaContentSignerBuilder tSignBldr =
new JcaContentSignerBuilder("SHA512WithRSAEncryption");
tSignBldr.setProvider("BC");
ContentSigner tSigGen = tSignBldr.build(tUserPrivKey);
X500NameBuilder tBuilder = new X500NameBuilder(BCStyle.INSTANCE);
tBuilder.addRDN(BCStyle.CN, "John X. Doe"); //-Common name
tBuilder.addRDN(BCStyle.E, "[email protected]"); //-E-mail
tBuilder.addRDN(BCStyle.L, "Detroit"); //-City/Locale
tBuilder.addRDN(BCStyle.ST, "MI"); //-State
org.bouncycastle.asn1.x500.X500Name tX500Name = tBuilder.build();
Calendar tCal = Calendar.getInstance();
tCal.set(2014, 12, 31);
java.util.Date tEnd = tCal.getTime(); //-Ending date for certificate
X509v3CertificateBuilder tV3CertGen = new JcaX509v3CertificateBuilder(
tX500Name,  //-Issuer is same as Subject
BigInteger.valueOf( System.currentTimeMillis()), //-Serial Number
new java.util.Date(), //-Date start
tEnd,     //-Date end
tX500Name,  //-Subject
tUserPubKey); //-Public RSA Key
X509CertificateHolder tCertHolder = tV3CertGen.build(tSigGen);
JcaX509CertificateConverter tConverter =
new JcaX509CertificateConverter().setProvider("BC");
X509Certificate tCert = tConverter.getCertificate(tCertHolder);

Step 4: Save the certificate to disk so that it can be used for encrypting your own personal information or distributing to others.

byte[] tBA = tCert.getEncoded();
File tFile = new File("C:\\" + tUniqueAlias + ".cer");
FileOutputStream tFOS = new FileOutputStream(tFile);
tFOS.write(tBA);
tFOS.close();

Step 5: Insert the certificate into an array of X509 certificates called a chain. Create a password protected key store file to hold the private key and certificate chain and save it to disk. The key store saves the private key and certificate chain as an entry at a unique key called the alias and is password protected as well. The same password will be used to protect the entry and key store.

KeyStore tKStore = KeyStore.getInstance("JKS", "SUN");
tKStore.load(null, null); //-Initialize KeyStore
X509Certificate[] tChain = new X509Certificate[1];
tChain[0] = tCert; //-Put certificate into a chain
tKStore.setKeyEntry(tUniqueAlias,
tUserPrivKey,
"password".toCharArray(),
tChain);
String tKSFileName = "C:\\" + tUniqueAlias + ".jks";
tFOS = new FileOutputStream(tKSFileName);
tKStore.store(tFOS, "password".toCharArray()); //-Set KeyStore password
tFOS.close();

Encryption with Digital Signature
Encryption is used to protect a file from being read by unauthorized eyes by altering its original contents to an indecipherable form. Using a hybrid encryption technique, the file is encrypted with an AES (Advanced Encryption Standard) symmetric key and the key is encrypted using RSA asymmetric encryption. In addition to protecting a file, a digital signature can be added to provide authentication of the originator who sent/encrypted the file. The digital signature is a unique number that is generated using the owner's asymmetric private key and a hash algorithm on the encrypted file contents. The following steps along with Java code snippets illustrate how to encrypt and add a digital signature to a file.

Figure 4: AES Symmetric Key

Step 1: Let's assume you want to encrypt and digitally sign the file, C:\sampleFile.txt. Dynamically generate a symmetric "secret" key using the Java class, KeyGenerator. The symmetric key will be used to encrypt the file. The Java class KeyGenerator is instantiated using the symmetric algorithm, "AES", and provider, BouncyCastle("BC"). The instance of KeyGenerator is initialized with a secure random seed and the maximum key size in bits allowed by your country. The following code illustrates how to generate a symmetric key.

KeyGenerator tKeyGen = KeyGenerator.getInstance("AES", "BC");
SecureRandom tRandom2 = new SecureRandom();
tKeyGen.init(256, tRandom2); //-256 bit AES symmetric key
SecretKey tSymmetricKey = tKeyGen.generateKey();

Step 2: Generate a Cryptography header that stores cryptographic information used to later decrypt the file and verify the digital signature. Save the symmetric algorithm, mode and padding in the header. The following code illustrates the header instantiation and initialization.

CryptoHeader tHead = new CryptoHeader();
tHead.setEncryptFlag(true);
tHead.setSignedFlag(true);
tHead.symKeyAlg(1);   //-AES
tHead.symKeyMode(5);  //-CTR Segmented Integer Counter mode
tHead.symKeyPadding(2); //-PKCS7 Padding
tHead.decryptID(tUniqueAlias); //-Owner's unique alias
tHead.decryptIDLength(tHead.decryptID().length());

Step 3: Load the owner's certificate and extract the public key. You can also load another person's certificate if you are encrypting the file for someone other than yourself. The public key will be used to encrypt the symmetric key.

InputStream tCertIS = new FileInputStream("C:\\" +tUniqueAlias+ ".cer");
CertificateFactory tFactory = CertificateFactory.getInstance("X.509","BC");
X509Certificate tCertificate =
(X509Certificate)tFactory.generateCertificate(tCertIS);
tCertIS.close();
PublicKey tPubKey = tCertificate.getPublicKey();

Step 4: Generate a Java Cipher object and initialize it using the owner's or another person's asymmetric public key extracted from the certificate and set its mode to "Cipher.WRAP_MODE". Use the Java Cipher and public key to encrypt and wrap the symmetric key. Store the wrapped encrypted key in the header and its length.

Cipher tCipherRSA = Cipher.getInstance("RSA", "BC");
tCipherRSA.init(Cipher.WRAP_MODE, (PublicKey)tPubKey);
byte[] tWrappedKey = tCipherRSA.wrap(tSymmetricKey);
tHead.wrappedSymKey(tWrappedKey);
tHead.wrappedSymKeyLength(tWrappedKey.length);

Figure 5. Wrap Symmetric Key

Step 5: Generate an initialization vector if required by the symmetric mode chosen to encrypt the file. AES is a block cipher symmetric algorithm and the Counter (CTR) mode requires an initialization vector. The AES block size is 16 bytes.

int tSize = Cipher.getInstance("AES", "BC").getBlockSize();
byte[] tInitVectorBytes = new byte[tSize];
SecureRandom tRandom3 = new SecureRandom();
tRandom3.nextBytes(tInitVectorBytes);
IvParameterSpec tIVSpec = new IvParameterSpec(tInitVectorBytes);

Figure 6. Initialization Vector

Step 6: Use the previously instantiated Cipher and set its mode to "Cipher.ENCRYPT_MODE". Use the public key to encrypt the initialization vector. Store the encrypted vector in the header along with its length.

tCipherRSA.init(Cipher.ENCRYPT_MODE, (PublicKey)tPubKey);
byte[] tInitVectorEncrypted = tCipherRSA.doFinal(tIVSpec.getIV());
tHead.initVector(tInitVectorEncrypted);
tHead.initVectorLength(tInitVectorEncrypted.length);

Figure 7. Wrap Initialization Vector

Step 7:(Optional) If you are using an enterprise CA hierarchy and encrypting for yourself, use the CA asymmetric public key stored in the key store to wrap the symmetric key and encrypt the initialization vector and store both in the header. If encrypting for another person, use the owner's asymmetric key to wrap the symmetric key and encrypt the initialization vector and store both in the header. You can store the values in the header variables, wrappedSymKeyOther and initVectorOther as well as their lengths. This provides the ability for the CA or owner to decrypt the encrypted file.

Step 8: The private key is stored in a Java key store and is password protected. Load the key store using your password. Retrieve the asymmetric private key from the key store using the same password. The asymmetric private key will be used to generate a digital signature and stored in the header.

FileInputStream tStoreFIS=new FileInputStream("C:\\"+tUniqueAlias+".jks");
KeyStore tMyKStore = KeyStore.getInstance("JKS", "SUN");
char[] tPW = "password".toCharArray();
tMyKStore.load(tStoreFIS, tPW);
PrivateKey tPrivKey = (PrivateKey)tMyKStore.getKey(tUniqueAlias, tPW);

Figure 8. Private Key

Step 9: Generate a Java Signature object specifying the signature algorithm and provider. Initialize the signature engine with the owner's asymmetric private key. The signature engine is bound to the private key so that only the public key can validate it. Store the signature algorithm in the header so that it can be verified later.

Signature tSigEngine =
Signature.getInstance("SHA512WithRSAEncryption", "BC");
tSigEngine.initSign(tPrivKey);
tHead.signatureAlg(12); //-SHA512WithRSAEncryption

Step 10: Generate a Java Cipher object based on the symmetric algorithm, mode, padding and provider which will be used to encrypt the target file. Initialize the Cipher object using the symmetric key and initialization vector and set its mode to "Cipher.ENCRYPT_MODE".

Cipher tCipherEncrypt = Cipher.getInstance("AES/CTR/PKCS7Padding", "BC");
tCipherEncrypt.init(Cipher.ENCRYPT_MODE, tSymmetricKey, tIVSpec);

Step 11: Load the file to be encrypted as a Java "FileInputStream". Encrypt the file to a temporary Java "FileOutputStream" using the Java Cipher, symmetric key and initialization vector and in parallel, sign the encrypted data with the signature engine. The stream is processed a buffer at a time till the end of the file is reached. The end result is an encrypted and digitally signed temporary file.

FileOutputStream tFileOS = new FileOutputStream("C:\\$$$$$$$$.tmp");
InputStream tFileIS = new FileInputStream("C:\\sampleFile.txt");
byte[] tInBuffer = new byte[4096];
byte[] tOutBuffer = new byte[4096];
int tNumOfBytesRead = tFileIS.read(tInBuffer);
while (tNumOfBytesRead == tInBuffer.length) {
//-Encrypt the input buffer data and store in the output buffer
int tNumOfBytesUpdated =
tCipherEncrypt.update(tInBuffer, 0, tInBuffer.length, tOutBuffer);
//-Sign the encrypted data in the output buffer
tSigEngine.update(tOutBuffer, 0, tNumOfBytesUpdated);
tFileOS.write(tOutBuffer, 0, tNumOfBytesUpdated);
tNumOfBytesRead = tFileIS.read(tInBuffer);
}
//-Process the remaining bytes in the input file.
if (tNumOfBytesRead > 0) {
tOutBuffer = tCipherEncrypt.doFinal(tInBuffer, 0, tNumOfBytesRead);
} else {
tOutBuffer = tCipherEncrypt.doFinal();
}
tSigEngine.update(tOutBuffer); //-Sign the remaining bytes
tFileOS.write(tOutBuffer, 0, tOutBuffer.length);
tFileOS.close(); //-Close the temporary file
tFileIS.close(); //-Close input file

Figure 9. Encrypt and Sign the File

The code can be made more efficient by allocating larger buffers and writing out the encrypted data after a threshold has been reached.

Step 12: Generate the digital signature from the signature engine after signing the file and store it in the header along with its length. Save the signature algorithm, signature certificate name and its length in the header.

byte[] tSignature = tSigEngine.sign();
tHead.signature(tSignature);
tHead.signatureLength(tSignature.length);
tHead.verifySigCertName(tUniqueAlias + ".cer");
tHead.verifySigCertNameLength(tHead.verifySigCertName().length());

Step 13: Calculate the total size of the header and save in the header along with its version. Write the header into a ByteArrayOutputStream, which can be converted to a byte array. The Cryptography header class contains a method to write out the header to a ByteArrayOutputStream. Write out the byte array to a file using a Java "FileOutputStream."

ByteArrayOutputStream tHeadBAOS = new ByteArrayOutputStream();
Object tRC = tHead.writeOutHeaderV4(new DataOutputStream(tHeadBAOS));
String tEncryptedFileName = "C:\\sampleFile.txt." + tUniqueAlias + ".asg";
FileOutputStream tFileOStream = new FileOutputStream(tEncryptedFileName);
byte[] tArray = tHeadBAOS.toByteArray();
tFileOStream.write(tArray, 0, tArray.length);

Step 14: Append the temporary "encrypted" file to the output stream. The end result is an encrypted file with a digital signature. Note that the file extension is "ASG" instead of "AES" to imply that it is encrypted and digitally signed. The temporary file though encrypted should be securely deleted afterwards by overwriting it.

tInStream = new FileInputStream("C:\\$$$$$$$$.tmp");
byte[] tBuffer = new byte[4096];
int tLength = tInStream.read(tBuffer);
while (tLength > 0) {
tFileOStream.write(tBuffer, 0, tLength);
tLength = tInStream.read(tBuffer);
}
tFileOStream.close();
tInstream.close();

Summary

This article demonstrates how to encrypt and digitally sign any file using Java Cryptography methods and the Cryptography libraries from Bouncy Castle organization. The Cryptography header provides information required to decipher the file and validate who encrypted its contents. The header also provides the flexibility to expand the usage of Cryptography such as allowing multiple recipients to decrypt a file by using each of their public keys to encrypt the same symmetric key. As society adopts file encryption as a standard way of protection, more creative uses will be invented by future Cyber warriors.

The source code (LaCryptoJarSample.java) is available on the Logical Answers Inc. website under the education web page as an individual file and also within the zip file, laCrypto-4.2.0.zipx.

References and Other Technical Notes
Software requirements:

  • Computer running Windows XP or higher...
  • Java Runtime (JRE V1.7 or higher)

Recommended reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
We all know that end users experience the Internet primarily with mobile devices. From an app development perspective, we know that successfully responding to the needs of mobile customers depends on rapid DevOps – failing fast, in short, until the right solution evolves in your customers' relationship to your business. Whether you’re decomposing an SOA monolith, or developing a new application cloud natively, it’s not a question of using microservices – not doing so will be a path to eventual b...
Digital transformation leaders have poured tons of money and effort into coding in recent years. And with good reason. To succeed at digital, you must be able to write great code. You also have to build a strong Agile culture so your coding efforts tightly align with market signals and business outcomes. But if your investments in testing haven’t kept pace with your investments in coding, you’ll lose. But if your investments in testing haven’t kept pace with your investments in coding, you’ll...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
Containers are rapidly finding their way into enterprise data centers, but change is difficult. How do enterprises transform their architecture with technologies like containers without losing the reliable components of their current solutions? In his session at @DevOpsSummit at 21st Cloud Expo, Tony Campbell, Director, Educational Services at CoreOS, will explore the challenges organizations are facing today as they move to containers and go over how Kubernetes applications can deploy with lega...
Today most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes significant work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reducti...
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
Is advanced scheduling in Kubernetes achievable? Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, will answer these questions and demonstrate techniques for implementing advanced scheduling. For example, using spot instances ...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, will describe how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launchi...
SYS-CON Events announced today that Cloud Academy has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Cloud Academy is the leading technology training platform for enterprise multi-cloud infrastructure. Cloud Academy is trusted by leading companies to deliver continuous learning solutions across Amazon Web Services, Microsoft Azure, Google Cloud Platform, and the most...
The last two years has seen discussions about cloud computing evolve from the public / private / hybrid split to the reality that most enterprises will be creating a complex, multi-cloud strategy. Companies are wary of committing all of their resources to a single cloud, and instead are choosing to spread the risk – and the benefits – of cloud computing across multiple providers and internal infrastructures, as they follow their business needs. Will this approach be successful? How large is the ...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
Many organizations adopt DevOps to reduce cycle times and deliver software faster; some take on DevOps to drive higher quality and better end-user experience; others look to DevOps for a clearer line-of-sight to customers to drive better business impacts. In truth, these three foundations go together. In this power panel at @DevOpsSummit 21st Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, industry experts will discuss how leading organizations build application success from all...
DevSecOps – a trend around transformation in process, people and technology – is about breaking down silos and waste along the software development lifecycle and using agile methodologies, automation and insights to help get apps to market faster. This leads to higher quality apps, greater trust in organizations, less organizational friction, and ultimately a five-star customer experience. These apps are the new competitive currency in this digital economy and they’re powered by data. Without ...
A common misconception about the cloud is that one size fits all. Companies expecting to run all of their operations using one cloud solution or service must realize that doing so is akin to forcing the totality of their business functionality into a straightjacket. Unlocking the full potential of the cloud means embracing the multi-cloud future where businesses use their own cloud, and/or clouds from different vendors, to support separate functions or product groups. There is no single cloud so...
For most organizations, the move to hybrid cloud is now a question of when, not if. Fully 82% of enterprises plan to have a hybrid cloud strategy this year, according to Infoholic Research. The worldwide hybrid cloud computing market is expected to grow about 34% annually over the next five years, reaching $241.13 billion by 2022. Companies are embracing hybrid cloud because of the many advantages it offers compared to relying on a single provider for all of their cloud needs. Hybrid offers bala...
With the modern notion of digital transformation, enterprises are chipping away at the fundamental organizational and operational structures that have been with us since the nineteenth century or earlier. One remarkable casualty: the business process. Business processes have become so ingrained in how we envision large organizations operating and the roles people play within them that relegating them to the scrap heap is almost unimaginable, and unquestionably transformative. In the Digital ...
These days, APIs have become an integral part of the digital transformation journey for all enterprises. Every digital innovation story is connected to APIs . But have you ever pondered over to know what are the source of these APIs? Let me explain - APIs sources can be varied, internal or external, solving different purposes, but mostly categorized into the following two categories. Data lakes is a term used to represent disconnected but relevant data that are used by various business units wit...
The nature of the technology business is forward-thinking. It focuses on the future and what’s coming next. Innovations and creativity in our world of software development strive to improve the status quo and increase customer satisfaction through speed and increased connectivity. Yet, while it's exciting to see enterprises embrace new ways of thinking and advance their processes with cutting edge technology, it rarely happens rapidly or even simultaneously across all industries.
It has never been a better time to be a developer! Thanks to cloud computing, deploying our applications is much easier than it used to be. How we deploy our apps continues to evolve thanks to cloud hosting, Platform-as-a-Service (PaaS), and now Function-as-a-Service. FaaS is the concept of serverless computing via serverless architectures. Software developers can leverage this to deploy an individual "function", action, or piece of business logic. They are expected to start within milliseconds...
With the rise of DevOps, containers are at the brink of becoming a pervasive technology in Enterprise IT to accelerate application delivery for the business. When it comes to adopting containers in the enterprise, security is the highest adoption barrier. Is your organization ready to address the security risks with containers for your DevOps environment? In his session at @DevOpsSummit at 21st Cloud Expo, Chris Van Tuin, Chief Technologist, NA West at Red Hat, will discuss: The top security r...