Welcome!

Microservices Expo Authors: Stackify Blog, Aruna Ravichandran, Dalibor Siroky, Kevin Jackson, PagerDuty Blog

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, @CloudExpo, @DXWorldExpo, SDN Journal

Containers Expo Blog: Article

The Big Data Bottleneck: Uploading to the Cloud

If only we could get those gigando-bytes into the Cloud in the first place. And there’s the rub.

The problem with Big Data is that, well, Big Data are big. Really big. We’re talking terabytes. Petabytes. Zettabytes. Whatever’s-even-bigger-bytes. And of course, we want to solve all our Big Data challenges in the Cloud. If only we could get those gigando-bytes into the Cloud in the first place. And there’s the rub.

Uploading Big Data from our internal network to the Cloud via an Internet connection is as practical as filling a swimming pool through a drinking straw. It doesn’t matter how sophisticated our Big Data analytics, how super-duper our Hadoopers. If we can’t efficiently get our data where we need them when we need them, we’re stuck.

Optimize the Pipe
Fortunately, the Big Data upload problem isn’t new. In fact, it’s been around for years, under the moniker Wide Area Network (WAN) Optimization. Fortunate for us because vendors have been working on WAN Optimization techniques for a while now, and now several of them are repurposing those techniques to help with the Cloud.

For example, Aryaka has been peddling WAN Optimization appliances for several years. Put one appliance in your local data center, a second in the remote data center, and proprietary technology moves data from one to the other at a rapid clip. Now that the Cloud has turned their world upside down, they are providing a distributed service at the remote end, a “mesh of network connections” better suited to the Cloud. In other words, Aryaka is building an offering similar to Content Delivery Networks (CDNs) like Akamai.

RainStor, in contrast, focuses primarily on a proprietary compression algorithm that promises to squeeze data into one fortieth their original size. Furthermore, RainStor’s compressed data remain directly accessible using standard SQL or even MapReduce on Hadoop with no storage-eating, time-consuming reinflation.

Then there’s Aspera, who’s found a sophisticated way around the limitations of the Transmission Control Protocol (TCP) itself. After all, TCP’s tiny packets and penchant for resending them are a large part of the reason uploading Big Data over the Internet runs like such a dog in the first place. To teach this dog a new trick or two, Aspera transfers use one TCP port for session initialization and control, and one User Datagram Protocol (UDP) port for data transfer.

UDP is an older, fire-and-forget protocol that doesn’t perform the retries that provide TCP’s reliability, but by combining the two protocols, FASP achieves nearly 100% error-free data throughput. In fact, FASP reaches the maximum transfer speed possible given the hardware on which you deploy it, and maintains maximum available throughput independent of network delay and packet loss. FASP also aggregates hundreds of concurrent transfers on commodity hardware, addressing the drinking straw problem in part by supporting hundreds of straws at once.

CloudOpt is also a player worth mentioning. Their JetStream technology takes a soup-to-nuts approach that combines compression and transmission protocol optimization with advanced data deduplication, SSL acceleration, and an ingenious approach to getting the most performance out of cached data. Or Attunity Cloudbeam, that touts file to Cloud upload, file to Cloud replication, and Cloud to Cloud replication. Attunity’s Managed File Transfer (MFT) incorporates a secure DMZ architecture, security policy enforcement, guaranteed and accelerated transfers, process automation, and audit capabilities across each stage of the file transfer process.

Finally, there’s Amazon Web Services (AWS) itself. Yes, most if not all of the vendors discussed above can firehose data into AWS’s various storage services. But AWS also offers a simple, if decidedly low-tech approach as well: AWS Import/Export. Simply ship your big hard drives to Amazon. They’ll hook them up, copy the data to your Simple Storage Service (S3) or other storage service, and ship the drive back when you’re done. This SneakerNet or “Forklifting” approach, believe it or not, can even be faster than some of the over-the-Internet optimizations for certain Big Data sets, even considering the time it takes to FedEx AWS your drives.

On Beyond Drinking Straws
The problem with most of the approaches above (excepting only Aspera and Amazon’s forklift) is that they make the drinking straw we’re using to fill that swimming pool better, faster, and bigger – but we’re still filling that damn pool with a straw. So what’s better than a straw? How about many straws? If any optimization technique improves a single connection to the Internet, then it stands to reason that establishing many connections to your Cloud provider in parallel would multiply your upload speed dramatically.

Fair enough, but let’s think out of the box here. A fundamental Big Data best practice is to bring your analytics to your data. The reasoning is that it’s hard to move your data but easy to move your software, so once your data are in the Cloud, you should also run your analytics there.

But this argument also works in reverse. If your data aren’t in the Cloud, then it may not make sense to move them to the Cloud simply to run your software there. Instead, bring your software to your data, even if they’re on premise.

Perish the thought, you say! We’re sold on Big Data in the Cloud. We’ve crunched the numbers and we know it’s going to save us money, provide more capabilities, and facilitate sharing information across our organization and the world. Fair enough. Here’s another twist for you.

Why are your Big Data sets outside the Cloud to begin with? Sure, you’re stuck with existing, legacy data sets wherever they happen to be today. But as a rule, those don’t constitute Big Data, or will cease to qualify as being large enough to warrant the Big Data label relatively soon. By definition, Big Data sets keep expanding exponentially, which means that you keep creating them with generations of newfangled tools.

In fact, there are already multitudinous sources for raw Big Data, as varied as the Big Data challenges organizations struggle with today. But many such sources are already in the Cloud, or could be moved to the Cloud simply. For example, clickthrough data from your Web sites. Such data come from your Web servers, which should be in the Cloud anyway. If your Big Data come from Web Servers scattered here and there in the Cloud, then moving the clickthrough data to a Big Data repository for processing can be handled in the same Cloud. No need for uploading.

What about data sources that aren’t already in the Cloud? Many Big Data streams come from instrumentation or sensors of some sort, from seismographs underground to EKGs in hospitals to UPC scanners in supermarkets. There’s no reason why such instrumentation shouldn’t pour their raw data feeds directly to the Cloud. What good is storing a week’s worth of supermarket purchasing data on premise anyway? You’ll want to store, process, manage, and analyze those data in the Cloud, so the sooner you get it there, the better.

The ZapThink Take
The only reason we have to worry about uploading Big Data to the Cloud in the first place is because our Big Data aren’t already in the Cloud. And broadly speaking, the reason they’re not already in the Cloud is because the Cloud isn’t everywhere. Instead, we think of the Cloud as being locked away in data centers, those alien, air conditioned facilities packed full of racks of high tech equipment.

That may be true today, but as ZapThink has discussed before, there’s nothing in the definition of Cloud Computing that requires Cloud resources to live in data centers. You might have a bit of the Cloud in your pocket, or on your laptop, in your car, or in your refrigerator. For now, this vision of the Internet of Things meeting the Cloud is mostly the stuff of science fiction. We’re only now figuring out what it means to have a ubiquitous global network of sensors, from the aforementioned EKGs and UPC scanners to traffic cameras to home thermostats. But the writing is on the wall. Just as we now don’t think twice about carrying supercomputers in our pockets, it’s only a matter of time until the Cloud itself is fully distributed and ubiquitous. When that happens, the question of moving Big Data to the Cloud will be moot. They will already be there.

Are you one of the vendors mentioned in this article and have a correction, or a vendor who should have been mentioned but wasn’t? Please feel free to comment here.

Image Source: US Navy

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@MicroservicesExpo Stories
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
For many of us laboring in the fields of digital transformation, 2017 was a year of high-intensity work and high-reward achievement. So we’re looking forward to a little breather over the end-of-year holiday season. But we’re going to have to get right back on the Continuous Delivery bullet train in 2018. Markets move too fast and customer expectations elevate too precipitously for businesses to rest on their laurels. Here’s a DevOps “to-do list” for 2018 that should be priorities for anyone w...
If testing environments are constantly unavailable and affected by outages, release timelines will be affected. You can use three metrics to measure stability events for specific environments and plan around events that will affect your critical path to release.
In a recent post, titled “10 Surprising Facts About Cloud Computing and What It Really Is”, Zac Johnson highlighted some interesting facts about cloud computing in the SMB marketplace: Cloud Computing is up to 40 times more cost-effective for an SMB, compared to running its own IT system. 94% of SMBs have experienced security benefits in the cloud that they didn’t have with their on-premises service
DevOps failure is a touchy subject with some, because DevOps is typically perceived as a way to avoid failure. As a result, when you fail in a DevOps practice, the situation can seem almost hopeless. However, just as a fail-fast business approach, or the “fail and adjust sooner” methodology of Agile often proves, DevOps failures are actually a step in the right direction. They’re the first step toward learning from failures and turning your DevOps practice into one that will lead you toward even...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
While walking around the office I happened upon a relatively new employee dragging emails from his inbox into folders. I asked why and was told, “I’m just answering emails and getting stuff off my desk.” An empty inbox may be emotionally satisfying to look at, but in practice, you should never do it. Here’s why. I recently wrote a piece arguing that from a mathematical perspective, Messy Desks Are Perfectly Optimized. While it validated the genius of my friends with messy desks, it also gener...
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task ...
Following a tradition dating back to 2002 at ZapThink and continuing at Intellyx since 2014, it’s time for Intellyx’s annual predictions for the coming year. If you’re a long-time fan, you know we have a twist to the typical annual prediction post: we actually critique our predictions from the previous year. To make things even more interesting, Charlie and I switch off, judging the other’s predictions. And now that he’s been with Intellyx for more than a year, this Cortex represents my first ...
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The Toyota Production System, a world-renowned production system is based on the "complete elimination of all waste". The "Toyota Way", grounded on continuous improvement dates to the 1860s. The methodology is widely proven to be successful yet there are still industries within and tangential to manufacturing struggling to adopt its core principles: Jidoka: a process should stop when an issue is identified prevents releasing defective products
We seem to run this cycle with every new technology that comes along. A good idea with practical applications is born, then both marketers and over-excited users start to declare it is the solution for all or our problems. Compliments of Gartner, we know it generally as “The Hype Cycle”, but each iteration is a little different. 2018’s flavor will be serverless computing, and by 2018, I mean starting now, but going most of next year, you’ll be sick of it. We are already seeing people write such...
Defining the term ‘monitoring’ is a difficult task considering the performance space has evolved significantly over the years. Lately, there has been a shift in the monitoring world, sparking a healthy debate regarding the definition and purpose of monitoring, through which a new term has emerged: observability. Some of that debate can be found in blogs by Charity Majors and Cindy Sridharan.
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.