Click here to close now.




















Welcome!

Microservices Expo Authors: Elizabeth White, Lori MacVittie, Pat Romanski, Ian Khan, Liz McMillan

Related Topics: SDN Journal, Java IoT, Microsoft Cloud, Containers Expo Blog, @CloudExpo, @BigDataExpo

SDN Journal: Blog Feed Post

Scaling Stateful Network Devices

One of the premises of SDN and cloud scalability is that it's easy to simply replicate services

One of the premises of SDN and cloud scalability is that it's easy to simply replicate services - whether they be application or network focused - and distribute traffic across them to scale infinitely.

In theory, this is absolutely the case. In theory, one can continue to add capacity to any layer of the data center and simply distribute requests across the layer to scale out as necessary.

Where reality puts a big old roadblock in the way is when services are stateful. This is the case with many applications - much to the chagrin of cloud and REST purists, by the way - and it is also true with a significant number of network devices. Unfortunately, it is often these devices that proponents of network virtualization target without offering a clear path to addressing the challenges inherent in scaling stateful network devices.

SDN's claims to supporting load balancing, at least at layer 4, are almost certainly based on traditional, dumb layer 4 load balancing. We use the term "dumb" to simply mean that it doesn't care about the payload or the application or anything else other than its destination port and service and does not participate in the flow. In most layer 4 load balancing scenarios for which this is the case, the only time the load balancer examines the traffic is when processing a new connection. The load balancer may buffer enough packets to determine some basic networking details - source and destination IP and TCP ports - and then it establishes a connection between the client and the server. From this point on, generally speaking, the load balancer assumes the role of a simple forwarder. Subsequent packets with the same pattern are simply forwarded on to the destination.

If you think about it, this is so close to the behavior described by an SDN-enabled network as to be virtually the same. In an SDN-enabled network, a new flow (session if you will, in the load balancing vernacular) would be directed to the SDN controller for processing. The SDN controller would determine its destination and inform the appropriate network components of that decision. Subsequent packets with the same pattern would be forwarded on to the destination according to the information in the FIB (Forwarding Information Base). As the load balancing service was scaled out, inevitably packets would be distributed to components lacking an entry in the FIB. Said components would query the controller, which would simply return the appropriate entry to the device.

In such a way, simple layer 4 load balancing can be achieved via SDN*.

However, the behavior of the layer 4 load balancing service described is stateless. It does not actively manage the flow. Aside from the initial inspection and routing decision, the load balancing service is actually just a bump in the wire, forwarding packets much in the same manner as any other switch in the network.

But what happens when the load balancing service is actively participating in the flow, i.e. it is stateful.

Scaling Stateful Devices

Stateful devices are those that actively manage a flow. That is, they may inspect, manipulate, or otherwise interact with flows in real-time. These devices are often used for security - both ingress and egress - as well as acceleration and optimization of application exchanges. They are also use for content transformation purposes, such as XML or SOA gateways, API management, and other application-focused scenarios. The most common use of stateful devices is persistent load balancing, aka sticky sessions, aka server affinity. Persistent load balancing requires the load balancing service (or device) maintain a mapping of user to application instance (or server, in traditional, non-virtualized environments). This mapping is unique to the device, and without it a wide variety of applications break when scaled - VDI being the most recent example of an application relying on persistence of sessions .

In all these cases, however, one thing is true: the device providing the service is an active participant. The device maintains service-specific information regarding a variety of variables including the user, the device, the traffic, the application, the data. The entire context of the session is often maintained by one or more devices along the traffic chain.

What that means is that, like stateful, shared-nothing applications, it matters to which device a specific request is directed. While certainly the same model used at layer 4 and below in which a central controller (or really bank of controllers) maintains this information and doles it on on-demand, the result is that depending on the distribution algorithm used, every stateful device would end up with the same flows installed. In the interim, the network is frantically applying optimization and acceleration policies to traffic that may be offset by the latency introduced by the need to query the controller for session state information, resulting in a net loss of performance experienced by the end-user.

And we're not even considering the impact of secured traffic on such a model, where any device needing to make decisions on such traffic must have access to the certificates and keys used to encrypt the traffic in order to decrypt, examine, and usually re-encrypt the traffic. Stateful network devices - application delivery controllers, intrusion prevention and detection systems, secure gateways, etc... - are often required to manage secured content, which means distributing and managing certificates and keys across what may be an ever-expanding set of network devices.

The reality is that stateful network devices are a necessary and integral component of not just networks but applications today. While modern network architectures like SDN bring much needed improvements to provisioning and management of large scale networks, their scaling models are based on the premise of stateless, relatively simple devices not actively participating in flows. For those devices that rely upon deep participation in the flow, this model introduces a variety of challenges that may not find a solution that fits well with SDN without compromising on performance outside new protocols capable of carrying that state persistently throughout the lifetime of a session.

* This does not address the issue of resources required to maintain said forwarding tables in a given device, which given current capacity of commoditized switches supported for such a role seems unlikely to be realistically achieved.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@MicroservicesExpo Stories
One of the ways to increase scalability of services – and applications – is to go “stateless.” The reasons for this are many, but in general by eliminating the mapping between a single client and a single app or service instance you eliminate the need for resources to manage state in the app (overhead) and improve the distributability (I can make up words if I want) of requests across a pool of instances. The latter occurs because sessions don’t need to hang out and consume resources that could ...
The Software Defined Data Center (SDDC), which enables organizations to seamlessly run in a hybrid cloud model (public + private cloud), is here to stay. IDC estimates that the software-defined networking market will be valued at $3.7 billion by 2016. Security is a key component and benefit of the SDDC, and offers an opportunity to build security 'from the ground up' and weave it into the environment from day one. In his session at 16th Cloud Expo, Reuven Harrison, CTO and Co-Founder of Tufin,...
Container technology is sending shock waves through the world of cloud computing. Heralded as the 'next big thing,' containers provide software owners a consistent way to package their software and dependencies while infrastructure operators benefit from a standard way to deploy and run them. Containers present new challenges for tracking usage due to their dynamic nature. They can also be deployed to bare metal, virtual machines and various cloud platforms. How do software owners track the usag...
Alibaba, the world’s largest ecommerce provider, has pumped over a $1 billion into its subsidiary, Aliya, a cloud services provider. This is perhaps one of the biggest moments in the global Cloud Wars that signals the entry of China into the main arena. Here is why this matters. The cloud industry worldwide is being propelled into fast growth by tremendous demand for cloud computing services. Cloud, which is highly scalable and offers low investment and high computational capabilities to end us...
You often hear the two titles of "DevOps" and "Immutable Infrastructure" used independently. In his session at DevOps Summit, John Willis, Technical Evangelist for Docker, covered the union between the two topics and why this is important. He provided an overview of Immutable Infrastructure then showed how an Immutable Continuous Delivery pipeline can be applied as a best practice for "DevOps." He ended the session with some interesting case study examples.
"We've just seen a huge influx of new partners coming into our ecosystem, and partners building unique offerings on top of our API set," explained Seth Bostock, Chief Executive Officer at IndependenceIT, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Digital Transformation is the ultimate goal of cloud computing and related initiatives. The phrase is certainly not a precise one, and as subject to hand-waving and distortion as any high-falutin' terminology in the world of information technology. Yet it is an excellent choice of words to describe what enterprise IT—and by extension, organizations in general—should be working to achieve. Digital Transformation means: handling all the data types being found and created in the organizat...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
JavaScript is primarily a client-based dynamic scripting language most commonly used within web browsers as client-side scripts to interact with the user, browser, and communicate asynchronously to servers. If you have been part of any web-based development, odds are you have worked with JavaScript in one form or another. In this article, I'll focus on the aspects of JavaScript that are relevant within the Node.js environment.
Approved this February by the Internet Engineering Task Force (IETF), HTTP/2 is the first major update to HTTP since 1999, when HTTP/1.1 was standardized. Designed with performance in mind, one of the biggest goals of HTTP/2 implementation is to decrease latency while maintaining a high-level compatibility with HTTP/1.1. Though not all testing activities will be impacted by the new protocol, it's important for testers to be aware of any changes moving forward.
This week, I joined SOASTA as Senior Vice President of Performance Analytics. Given my background in cloud computing and distributed systems operations — you may have read my blogs on CNET or GigaOm — this may surprise you, but I want to explain why this is the perfect time to take on this opportunity with this team. In fact, that’s probably the best way to break this down. To explain why I’d leave the world of infrastructure and code for the world of data and analytics, let’s explore the timing...
Learn how to solve the problem of keeping files in sync between multiple Docker containers. In his session at 16th Cloud Expo, Aaron Brongersma, Senior Infrastructure Engineer at Modulus, discussed using rsync, GlusterFS, EBS and Bit Torrent Sync. He broke down the tools that are needed to help create a seamless user experience. In the end, can we have an environment where we can easily move Docker containers, servers, and volumes without impacting our applications? He shared his results so yo...
Auto-scaling environments, micro-service architectures and globally-distributed teams are just three common examples of why organizations today need automation and interoperability more than ever. But is interoperability something we simply start doing, or does it require a reexamination of our processes? And can we really improve our processes without first making interoperability a requirement for how we choose our tools?
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
The Internet of Things. Cloud. Big Data. Real-Time Analytics. To those who do not quite understand what these phrases mean (and let’s be honest, that’s likely to be a large portion of the world), words like “IoT” and “Big Data” are just buzzwords. The truth is, the Internet of Things encompasses much more than jargon and predictions of connected devices. According to Parker Trewin, Senior Director of Content and Communications of Aria Systems, “IoT is big news because it ups the ante: Reach out ...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Our guest on the podcast this week is Adrian Cockcroft, Technology Fellow at Battery Ventures. We discuss what makes Docker and Netflix highly successful, especially through their use of well-designed IT architecture and DevOps.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
Public Cloud IaaS started its life in the developer and startup communities and has grown rapidly to a $20B+ industry, but it still pales in comparison to how much is spent worldwide on IT: $3.6 trillion. In fact, there are 8.6 million data centers worldwide, the reality is many small and medium sized business have server closets and colocation footprints filled with servers and storage gear. While on-premise environment virtualization may have peaked at 75%, the Public Cloud has lagged in adop...
MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with ...