Welcome!

Microservices Expo Authors: Simon Hill, Dalibor Siroky, Liz McMillan, John Worthington, Automic Blog

Related Topics: SDN Journal, Java IoT, Microsoft Cloud, Containers Expo Blog, @CloudExpo, @DXWorldExpo

SDN Journal: Blog Feed Post

Scaling Stateful Network Devices

One of the premises of SDN and cloud scalability is that it's easy to simply replicate services

One of the premises of SDN and cloud scalability is that it's easy to simply replicate services - whether they be application or network focused - and distribute traffic across them to scale infinitely.

In theory, this is absolutely the case. In theory, one can continue to add capacity to any layer of the data center and simply distribute requests across the layer to scale out as necessary.

Where reality puts a big old roadblock in the way is when services are stateful. This is the case with many applications - much to the chagrin of cloud and REST purists, by the way - and it is also true with a significant number of network devices. Unfortunately, it is often these devices that proponents of network virtualization target without offering a clear path to addressing the challenges inherent in scaling stateful network devices.

SDN's claims to supporting load balancing, at least at layer 4, are almost certainly based on traditional, dumb layer 4 load balancing. We use the term "dumb" to simply mean that it doesn't care about the payload or the application or anything else other than its destination port and service and does not participate in the flow. In most layer 4 load balancing scenarios for which this is the case, the only time the load balancer examines the traffic is when processing a new connection. The load balancer may buffer enough packets to determine some basic networking details - source and destination IP and TCP ports - and then it establishes a connection between the client and the server. From this point on, generally speaking, the load balancer assumes the role of a simple forwarder. Subsequent packets with the same pattern are simply forwarded on to the destination.

If you think about it, this is so close to the behavior described by an SDN-enabled network as to be virtually the same. In an SDN-enabled network, a new flow (session if you will, in the load balancing vernacular) would be directed to the SDN controller for processing. The SDN controller would determine its destination and inform the appropriate network components of that decision. Subsequent packets with the same pattern would be forwarded on to the destination according to the information in the FIB (Forwarding Information Base). As the load balancing service was scaled out, inevitably packets would be distributed to components lacking an entry in the FIB. Said components would query the controller, which would simply return the appropriate entry to the device.

In such a way, simple layer 4 load balancing can be achieved via SDN*.

However, the behavior of the layer 4 load balancing service described is stateless. It does not actively manage the flow. Aside from the initial inspection and routing decision, the load balancing service is actually just a bump in the wire, forwarding packets much in the same manner as any other switch in the network.

But what happens when the load balancing service is actively participating in the flow, i.e. it is stateful.

Scaling Stateful Devices

Stateful devices are those that actively manage a flow. That is, they may inspect, manipulate, or otherwise interact with flows in real-time. These devices are often used for security - both ingress and egress - as well as acceleration and optimization of application exchanges. They are also use for content transformation purposes, such as XML or SOA gateways, API management, and other application-focused scenarios. The most common use of stateful devices is persistent load balancing, aka sticky sessions, aka server affinity. Persistent load balancing requires the load balancing service (or device) maintain a mapping of user to application instance (or server, in traditional, non-virtualized environments). This mapping is unique to the device, and without it a wide variety of applications break when scaled - VDI being the most recent example of an application relying on persistence of sessions .

In all these cases, however, one thing is true: the device providing the service is an active participant. The device maintains service-specific information regarding a variety of variables including the user, the device, the traffic, the application, the data. The entire context of the session is often maintained by one or more devices along the traffic chain.

What that means is that, like stateful, shared-nothing applications, it matters to which device a specific request is directed. While certainly the same model used at layer 4 and below in which a central controller (or really bank of controllers) maintains this information and doles it on on-demand, the result is that depending on the distribution algorithm used, every stateful device would end up with the same flows installed. In the interim, the network is frantically applying optimization and acceleration policies to traffic that may be offset by the latency introduced by the need to query the controller for session state information, resulting in a net loss of performance experienced by the end-user.

And we're not even considering the impact of secured traffic on such a model, where any device needing to make decisions on such traffic must have access to the certificates and keys used to encrypt the traffic in order to decrypt, examine, and usually re-encrypt the traffic. Stateful network devices - application delivery controllers, intrusion prevention and detection systems, secure gateways, etc... - are often required to manage secured content, which means distributing and managing certificates and keys across what may be an ever-expanding set of network devices.

The reality is that stateful network devices are a necessary and integral component of not just networks but applications today. While modern network architectures like SDN bring much needed improvements to provisioning and management of large scale networks, their scaling models are based on the premise of stateless, relatively simple devices not actively participating in flows. For those devices that rely upon deep participation in the flow, this model introduces a variety of challenges that may not find a solution that fits well with SDN without compromising on performance outside new protocols capable of carrying that state persistently throughout the lifetime of a session.

* This does not address the issue of resources required to maintain said forwarding tables in a given device, which given current capacity of commoditized switches supported for such a role seems unlikely to be realistically achieved.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@MicroservicesExpo Stories
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
identify the sources of event storms and performance anomalies will require automated, real-time root-cause analysis. I think Enterprise Management Associates said it well: “The data and metrics collected at instrumentation points across the application ecosystem are essential to performance monitoring and root cause analysis. However, analytics capable of transforming data and metrics into an application-focused report or dashboards are what separates actual application monitoring from relat...
The benefits of automation are well documented; it increases productivity, cuts cost and minimizes errors. It eliminates repetitive manual tasks, freeing us up to be more innovative. By that logic, surely, we should automate everything possible, right? So, is attempting to automate everything a sensible - even feasible - goal? In a word: no. Consider this your short guide as to what to automate and what not to automate.
We just came off of a review of a product that handles both containers and virtual machines in the same interface. Under the covers, implementation of containers defaults to LXC, though recently Docker support was added. When reading online, or searching for information, increasingly we see “Container Management” products listed as competitors to Docker, when in reality things like Rocket, LXC/LXD, and Virtualization are Dockers competitors. After doing some looking around, we have decided tha...
It’s “time to move on from DevOps and continuous delivery.” This was the provocative title of a recent article in ZDNet, in which Kelsey Hightower, staff developer advocate at Google Cloud Platform, suggested that “software shops should have put these concepts into action years ago.” Reading articles like this or listening to talks at most DevOps conferences might make you think that we’re entering a post-DevOps world. But vast numbers of organizations still struggle to start and drive transfo...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
Many enterprise and government IT organizations are realizing the benefits of cloud computing by extending IT delivery and management processes across private and public cloud services. But they are often challenged with balancing the need for centralized cloud governance without stifling user-driven innovation. This strategy requires an approach that fundamentally reshapes how IT is delivered today, shifting the focus from infrastructure to services aggregation, and mixing and matching the bes...
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
"Opsani helps the enterprise adopt containers, help them move their infrastructure into this modern world of DevOps, accelerate the delivery of new features into production, and really get them going on the container path," explained Ross Schibler, CEO of Opsani, and Peter Nickolov, CTO of Opsani, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
DevOps teams have more on their plate than ever. As infrastructure needs grow, so does the time required to ensure that everything's running smoothly. This makes automation crucial - especially in the server and network monitoring world. Server monitoring tools can save teams time by automating server management and providing real-time performance updates. As budgets reset for the New Year, there is no better time to implement a new server monitoring tool (or re-evaluate your current solution)....
While we understand Agile as a means to accelerate innovation, manage uncertainty and cope with ambiguity, many are inclined to think that it conflicts with the objectives of traditional engineering projects, such as building a highway, skyscraper or power plant. These are plan-driven and predictive projects that seek to avoid any uncertainty. This type of thinking, however, is short-sighted. Agile approaches are valuable in controlling uncertainty because they constrain the complexity that ste...
"This all sounds great. But it's just not realistic." This is what a group of five senior IT executives told me during a workshop I held not long ago. We were working through an exercise on the organizational characteristics necessary to successfully execute a digital transformation, and the group was doing their ‘readout.' The executives loved everything we discussed and agreed that if such an environment existed, it would make transformation much easier. They just didn't believe it was reali...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
The cloud revolution in enterprises has very clearly crossed the phase of proof-of-concepts into a truly mainstream adoption. One of most popular enterprise-wide initiatives currently going on are “cloud migration” programs of some kind or another. Finding business value for these programs is not hard to fathom – they include hyperelasticity in infrastructure consumption, subscription based models, and agility derived from rapid speed of deployment of applications. These factors will continue to...