Microservices Expo Authors: Lori MacVittie, Carmen Gonzalez, Yeshim Deniz, Liz McMillan, Pat Romanski

Related Topics: SYS-CON BRASIL, Industrial IoT, Microservices Expo


i-Technology Viewpoint: The Performance Woe of Binary XML

XML Overhead – The Scapegoat's Story

[This article was our best-read XML-related article in 2006.]

Since its inception, XML has been criticized for the overhead it introduces into the enterprise infrastructure. Business data encoded in XML takes five to 10 times more bandwidth to transmit in the network and proportionally more disk space to store. While most agree that verbosity is inherent to XML's way of encoding information (e.g., extensive use of tags and pointy brackets), the explanation of XML's perceived performance issue remains inconclusive. A popular belief is that since XML is human-readable text, it has to be slow and inefficient. And by the same token, proponents of binary XML seem to suggest that a compact encoding format, most noticeably the binary XML, would automatically lead to better processing performance.

Does it make sense for doctors to prescribe medicine without a diagnosis? Whether those perceptions and beliefs have a grain of truth or not, one thing is certain: Without a solid understanding of XML's performance issue, it will be difficult, if not impossible, to devise meaningful solutions. So in this article, I'll attempt to dissect XML's performance issue by focusing on three key questions: (1) Does XML have a performance issue? (2) What is the real culprit behind XML's slow performance? (3) Can binary XML fundamentally solve the problem.

Performance Is Not an XML Issue Per Se
In networking system design, the OSI (Open System Interconnect) stack is the standard model that divides the functions of the network into seven layers. Each layer only uses the layer below and only exports functionalities to the layer above. Compared with monolithic approaches, the advantages of OSI's layered approach are the robustness, resilience, and extensibility of the networking system in the face of rapid technology evolution. For example, any Voice over IP applications will work without knowing the physical layer of the networks (e.g., using copper, fiber cable, or Wi-Fi), or the data link layer (e.g., Ethernet, Frame Relay, or ATM).

Likewise, we can take a similar layered approach to modeling XML-based applications. Figure 1 is a simplified view of this "XML protocol stack" consisting of three layers: the XML data layer, the XML parsing layer, and the application layer. The application layer only uses functions exported by the XML parsing layer, which translates the data from its physical representation (XML) into its logical representation (the infoset).

Several observations can be made concerning the perceived performance issue of XML. First and foremost, because the XML application can only go as fast as the XML parsers can process XML messages, performance is actually not an issue of XML per se, but instead an issue of the XML parsing layer. If an XML routing application (assuming minimum overhead at the application layer) can't keep pace with incoming XML messages at a gigabit per second, it's most likely because the throughput of XML parsing is less than that of the network. Consequently, the correct way to boost the application performance is to optimize the XML parsing layer. Just like tuning any software applications, the best way to do it is to discover then find ways to reduce or eliminate the overhead in XML parsers.

Object Allocation - the Real Culprit To get a feel of the performance offered by current XML parsing technologies, I benchmarked the parsing throughput of the two types of widely used XML parsers - Xerces DOM and Xerces SAX. The benchmark applications are quite simple. They first read an XML document into memory then invoke parser routines to parse the document for a large number of iterations and the parsing throughput is calculated by dividing the file size by the average latency of each parsing iteration. For SAX parsing, the content handler is set to NULL. Several XML document in varying sizes, tagginess, and structural complexity were chosen for the benchmark. The results, produced by a two-year old 1.7GHz Pentium M laptop, are summarized in Figure 2. The complete report, which includes test setup, methodology, and code, is available online at http://vtd-xml.sf.net/benchmark.html.

The benchmark results are quite consistent with the well-known performance characteristics of DOM and SAX. First of all, the raw parsing throughput of SAX, at between 20MB/sec~30MB/sec, is actually quite respectable. However, by not exposing the inherent structural information, SAX essentially treats XML as CSV with "pointy brackets," often making it prohibitively difficult to use and unsuitable as a general-purpose XML parser. DOM, on the other hand, lets developers navigate in-memory tree structure. But the benchmark results also show that, except for very small files, DOM is typically three to five times slower than SAX. Because DOM parsers internally usually use SAX to tokenize XML, by comparing the performance differences, it's clear that building the in-memory tree structure is where the bottleneck is. In other words, allocating all the objects and connecting them together dramatically slow everything down. As the next step, I ran JProfiler (from EJ-technology) to identify where DOM and SAX parsing spend all the CPU cycles. The results confirmed my early suspicion that the overhead of object allocation overwhelmingly bottlenecks DOM parsing and, to a lesser (but still significant) degree, SAX parsing as well.

Some readers may question that DOM - only an API specification - doesn't preclude efficient, less object-intensive, implementations. Not so. The DOM spec is in fact based entirely on the assumption that the hierarchical structure consists entirely of objects exposing the Node interface. The most any DOM implementation can do is alter the implementation of the object sitting behind the Node interface, and it's impossible to rip away the objects altogether. So, if the object creation is the main culprit, the DOM spec itself is the accomplice that makes any performance-oriented optimizations prohibitively difficult. And this is why, after the past eight years and countless efforts by all major IT companies, every implementation of DOM has only seen marginal performance improvement.

Binary XML Solves the Wrong Problem
Can binary XML fundamentally solve the performance issue of XML? Well, since the performance issue belongs to XML parsers, a better question to ask is whether binary XML can help make parsing more efficient. The answer has two parts - one for SAX, the other for DOM.

Binary XML can improve the raw SAX parsing speed. There are a lot of XML-specific syntax features that binary XML can choose not to inherit. For example, binary XML can replace the ending tags with something more efficient, entirely avoiding attributes so SAX parsing no longer does uniqueness checking, or find other ways to represent the document structure. There are many ways to trim CPU cycles off SAX's tokenization cost. And proponents of binary XML often cites up to a 10x speedup for the binary XML version of SAX over text XML.

But they ignored the simple fact that SAX has serious usability issues. The awkward forward-only nature of SAX parsing not only requires extra implementation effort, but also incurs performance penalties when the document structure becomes only slightly complex. If developers choose not to scan the document multiple times, they'll have to buffer the document or build custom object models. In addition, SAX doesn't work well with XPath, and in general can't drive XSLT processing (binary XML has to be transformed as well, right?). So pointing to SAX's raw performance for binary XML as a proof of binary XML's merit is both unfair and misleading. The bottom line: for a XML processing model to be broadly useful, the API must expose the inherent structure of XML.

Unfortunately, binary XML won't make much difference improving DOM parsing for the simple reason that DOM parsing generally spends most CPU cycles building in-memory tree structure, not on tokenization. So the speedup of DOM due to faster SAX parsing is quite limited. In other words, DOM parsing for binary XML will be slow as well. And going one step further, object-graph based parser will have the same kind of performance issue for virtually any data format such as DCOM, RMI, or CORBA. XML is merely the scapegoat.

Reduce Object Creation - the Correct Approach
From my benchmark and profiling results, it's quite easy to see that the best way to remove the performance bottleneck in XML parsing is to reduce the object-creation cost of building the in-memory hierarchical structure. And the possibilities are, in fact, endless, and only limited by the imagination. Good solutions can and will emerge. And among them is VTD-XML (http://vtd-xml.sf.net). To achieve high performance, VTD-XML approaches XML parsing through the two object-less steps: (1) non-extractive tokenization and (2) hierarchical-directory-based random access. The result: VTD-XML drastically reduces the number of objects while still exporting the hierarchical structure to application developers and significantly outperforming SAX. (See Figure 3)

To summarize, the right way is to find better parsing techniques beyond DOM and SAX that significantly reduce the object-creation cost of building XML's tree structure. Binary XML won't fundamentally solve XML's performance issue because the problem belongs to XML parsers, not XML.

More Stories By Jimmy Zhang

Jimmy Zhang is a cofounder of XimpleWare, a provider of high performance XML processing solutions. He has working experience in the fields of electronic design automation and Voice over IP for a number of Silicon Valley high-tech companies. He holds both a BS and MS from the department of EECS from U.C. Berkeley.

Comments (10) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

Most Recent Comments
RTL 09/08/06 10:44:16 AM EDT

Sure the network may be "fast enough" from a raw mbps perspective. The problem is, in a real-world scenario your application may not be the only user of that bandwidth. And if everyone is stuffing the network full of data bloated with excessive overhead (such as what XML specifies), you can choke the network. It's not rocket science -- cut the data-bloat on the network in half and you double the capacity/performance. Even if the network is not running at full capacity, cutting the traffic in half (via more efficient data transport protocols) makes everything run more smoothly and doubles the lifetime of the existing infrastructure (i.e., it will take twice as long to fill up), ultimately reducing cost.

jzhang 09/07/06 09:46:36 PM EDT

This article is entirely about parsing performance, not the size of XML... the problem is that parsing can't keep up with the speed of the network...
XmL is not slow, *xml parsers* are slow

RTL 09/07/06 03:32:13 PM EDT

This article seems to miss the point of the performance critism of XML. The problem is not so much one of parsing (although that is an issue), but network bandwidth. From a bandwith perspective, XML is just about the world's most inefficient protocol one could devise for transmitting data. If binary XML could cut the file size even just in half, that doubles an applications network performance.

There is no reason why you could not perform the same job as text-XML with binary-XML. You would gain significant performance benefits with the only downside being that you lose immediate human readability. You know... sometimes it seems that XML was embraced and championed by a lot of young, wet-behind-the-ears HTML hackers who didn't know how to read hex. :)

alucinor 08/31/06 05:32:15 PM EDT

> queZZtion commented on the 31 Aug 2006:
> MSFT submitted OpenXML to ECMA, anyone
> know if they plan to submit it to ISO too?

Microsoft's Open XML is just a delay tactic -- their old strategy of vaporware vaporware vaporware ... that sometimes materializes at the last second, never as grand as promised, but having accomplished its goal of causing everyone to say "Let's wait and see what Microsoft will do first!"

And MOX is Latin for "soon". Coincidence?!

queZZtion 08/31/06 05:30:54 PM EDT

MSFT submitted OpenXML to ECMA, anyone know if they plan to submit it to ISO too?

An0n 08/31/06 05:29:34 PM EDT

HR-XML Anyone? View link: http://www.hr-xml.org/

Jimmy Zhang 08/02/06 09:57:28 PM EDT

Responding to your comment #1

It doesn't see that we are disagreeing, because if the CPU is devoting much cycles on application logic, then there is less incentive going to binary XML with the hope of speeding up overall app performance

Concerning your comment #2, built-in indexing is not just for binary XML, it can be done for XML as well, so this argument is quite weak... or do I misintepret anything??

Henrik 07/31/06 04:56:45 AM EDT

I don't quite buy your argument.

1) You are only looking at a single process assuming that the CPU has nothing better to do than parsing and processing. On a server any performance improvement will help server throughput.

2) The main benefit of a binary format would be built in indexing. If done properly DOM wouldn't have to build much of a structure at all but rather work directly on the binary image and extract nodes on request.

3) I don't really see a SAX parser getting a drastic improvement though.

XML News Desk 07/30/06 11:37:30 AM EDT

Since its inception, XML has been criticized for the overhead it introduces into the enterprise infrastructure. Business data encoded in XML takes five to 10 times more bandwidth to transmit in the network and proportionally more disk space to store. While most agree that verbosity is inherent to XML's way of encoding information (e.g., extensive use of tags and pointy brackets), the explanation of XML's perceived performance issue remains inconclusive. A popular belief is that since XML is human-readable text, it has to be slow and inefficient. And by the same token, proponents of binary XML seem to suggest that a compact encoding format, most noticeably the binary XML, would automatically lead to better processing performance.

XML News Desk 07/30/06 08:54:25 AM EDT

Since its inception, XML has been criticized for the overhead it introduces into the enterprise infrastructure. Business data encoded in XML takes five to 10 times more bandwidth to transmit in the network and proportionally more disk space to store. While most agree that verbosity is inherent to XML's way of encoding information (e.g., extensive use of tags and pointy brackets), the explanation of XML's perceived performance issue remains inconclusive. A popular belief is that since XML is human-readable text, it has to be slow and inefficient. And by the same token, proponents of binary XML seem to suggest that a compact encoding format, most noticeably the binary XML, would automatically lead to better processing performance.

@MicroservicesExpo Stories
When we talk about the impact of BYOD and BYOA and the Internet of Things, we often focus on the impact on data center architectures. That's because there will be an increasing need for authentication, for access control, for security, for application delivery as the number of potential endpoints (clients, devices, things) increases. That means scale in the data center. What we gloss over, what we skip, is that before any of these "things" ever makes a request to access an application it had to...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
Virgil consists of an open-source encryption library, which implements Cryptographic Message Syntax (CMS) and Elliptic Curve Integrated Encryption Scheme (ECIES) (including RSA schema), a Key Management API, and a cloud-based Key Management Service (Virgil Keys). The Virgil Keys Service consists of a public key service and a private key escrow service. 

In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, will discuss how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team a...
Digitization is driving a fundamental change in society that is transforming the way businesses work with their customers, their supply chains and their people. Digital transformation leverages DevOps best practices, such as Agile Parallel Development, Continuous Delivery and Agile Operations to capitalize on opportunities and create competitive differentiation in the application economy. However, information security has been notably absent from the DevOps movement. Speed doesn’t have to negat...
SYS-CON Events announced today that eCube Systems, the leading provider of modern development tools and best practices for Continuous Integration on OpenVMS, will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. eCube Systems offers a family of middleware products and development tools that maximize return on technology investment by leveraging existing technical equity to meet evolving business needs. ...
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes ho...
Join Impiger for their featured webinar: ‘Cloud Computing: A Roadmap to Modern Software Delivery’ on November 10, 2016, at 12:00 pm CST. Very few companies have not experienced some impact to their IT delivery due to the evolution of cloud computing. This webinar is not about deciding whether you should entertain moving some or all of your IT to the cloud, but rather, a detailed look under the hood to help IT professionals understand how cloud adoption has evolved and what trends will impact th...
Whether they’re located in a public, private, or hybrid cloud environment, cloud technologies are constantly evolving. While the innovation is exciting, the end mission of delivering business value and rapidly producing incremental product features is paramount. In his session at @DevOpsSummit at 19th Cloud Expo, Kiran Chitturi, CTO Architect at Sungard AS, will discuss DevOps culture, its evolution of frameworks and technologies, and how it is achieving maturity. He will also cover various st...
As we enter the final week before the 19th International Cloud Expo | @ThingsExpo in Santa Clara, CA, it's time for me to reflect on six big topics that will be important during the show. Hybrid Cloud This general-purpose term seems to provide a comfort zone for many enterprise IT managers. It sounds reassuring to be able to work with one of the major public-cloud providers like AWS or Microsoft Azure while still maintaining an on-site presence.
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
operations aren’t merging to become one discipline. Nor is operations simply going away. Rather, DevOps is leading software development and operations – together with other practices such as security – to collaborate and coexist with less overhead and conflict than in the past. In his session at @DevOpsSummit at 19th Cloud Expo, Gordon Haff, Red Hat Technology Evangelist, will discuss what modern operational practices look like in a world in which applications are more loosely coupled, are deve...
DevOps is speeding towards the IT world like a freight train and the hype around it is deafening. There is no reason to be afraid of this change as it is the natural reaction to the agile movement that revolutionized development just a few years ago. By definition, DevOps is the natural alignment of IT performance to business profitability. The relevance of this has yet to be quantified but it has been suggested that the route to the CEO’s chair will come from the IT leaders that successfully ma...
As the world moves toward more DevOps and Microservices, application deployment to the cloud ought to become a lot simpler. The Microservices architecture, which is the basis of many new age distributed systems such as OpenStack, NetFlix and so on, is at the heart of Cloud Foundry - a complete developer-oriented Platform as a Service (PaaS) that is IaaS agnostic and supports vCloud, OpenStack and AWS. Serverless computing is revolutionizing computing. In his session at 19th Cloud Expo, Raghav...
This is a no-hype, pragmatic post about why I think you should consider architecting your next project the way SOA and/or microservices suggest. No matter if it’s a greenfield approach or if you’re in dire need of refactoring. Please note: considering still keeps open the option of not taking that approach. After reading this, you will have a better idea about whether building multiple small components instead of a single, large component makes sense for your project. This post assumes that you...
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain. In this power panel at @...
As software becomes more and more complex, we, as software developers, have been splitting up our code into smaller and smaller components. This is also true for the environment in which we run our code: going from bare metal, to VMs to the modern-day Cloud Native world of containers, schedulers and microservices. While we have figured out how to run containerized applications in the cloud using schedulers, we've yet to come up with a good solution to bridge the gap between getting your conta...
Enterprise IT has been in the era of Hybrid Cloud for some time now. But it seems most conversations about Hybrid are focused on integrating AWS, Microsoft Azure, or Google ECM into existing on-premises systems. Where is all the Private Cloud? What do technology providers need to do to make their offerings more compelling? How should enterprise IT executives and buyers define their focus, needs, and roadmap, and communicate that clearly to the providers?
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his general session at @DevOpsSummit at 19th Cloud Expo, Eric Robertson, General Manager at CollabNet, will discuss how customers are able to achieve a level of transparency that e...
Today every business relies on software to drive the innovation necessary for a competitive edge in the Application Economy. This is why collaboration between development and operations, or DevOps, has become IT’s number one priority. Whether you are in Dev or Ops, understanding how to implement a DevOps strategy can deliver faster development cycles, improved software quality, reduced deployment times and overall better experiences for your customers.