Welcome!

Microservices Expo Authors: Jason Bloomberg, Elizabeth White, Carmen Gonzalez, Pat Romanski, AppNeta Blog

Related Topics: SYS-CON BRASIL, Industrial IoT, Microservices Expo

SYS-CON BRASIL: Article

i-Technology Viewpoint: The Performance Woe of Binary XML

XML Overhead – The Scapegoat's Story

[This article was our best-read XML-related article in 2006.]

Since its inception, XML has been criticized for the overhead it introduces into the enterprise infrastructure. Business data encoded in XML takes five to 10 times more bandwidth to transmit in the network and proportionally more disk space to store. While most agree that verbosity is inherent to XML's way of encoding information (e.g., extensive use of tags and pointy brackets), the explanation of XML's perceived performance issue remains inconclusive. A popular belief is that since XML is human-readable text, it has to be slow and inefficient. And by the same token, proponents of binary XML seem to suggest that a compact encoding format, most noticeably the binary XML, would automatically lead to better processing performance.

Does it make sense for doctors to prescribe medicine without a diagnosis? Whether those perceptions and beliefs have a grain of truth or not, one thing is certain: Without a solid understanding of XML's performance issue, it will be difficult, if not impossible, to devise meaningful solutions. So in this article, I'll attempt to dissect XML's performance issue by focusing on three key questions: (1) Does XML have a performance issue? (2) What is the real culprit behind XML's slow performance? (3) Can binary XML fundamentally solve the problem.

Performance Is Not an XML Issue Per Se
In networking system design, the OSI (Open System Interconnect) stack is the standard model that divides the functions of the network into seven layers. Each layer only uses the layer below and only exports functionalities to the layer above. Compared with monolithic approaches, the advantages of OSI's layered approach are the robustness, resilience, and extensibility of the networking system in the face of rapid technology evolution. For example, any Voice over IP applications will work without knowing the physical layer of the networks (e.g., using copper, fiber cable, or Wi-Fi), or the data link layer (e.g., Ethernet, Frame Relay, or ATM).

Likewise, we can take a similar layered approach to modeling XML-based applications. Figure 1 is a simplified view of this "XML protocol stack" consisting of three layers: the XML data layer, the XML parsing layer, and the application layer. The application layer only uses functions exported by the XML parsing layer, which translates the data from its physical representation (XML) into its logical representation (the infoset).

Several observations can be made concerning the perceived performance issue of XML. First and foremost, because the XML application can only go as fast as the XML parsers can process XML messages, performance is actually not an issue of XML per se, but instead an issue of the XML parsing layer. If an XML routing application (assuming minimum overhead at the application layer) can't keep pace with incoming XML messages at a gigabit per second, it's most likely because the throughput of XML parsing is less than that of the network. Consequently, the correct way to boost the application performance is to optimize the XML parsing layer. Just like tuning any software applications, the best way to do it is to discover then find ways to reduce or eliminate the overhead in XML parsers.

Object Allocation - the Real Culprit To get a feel of the performance offered by current XML parsing technologies, I benchmarked the parsing throughput of the two types of widely used XML parsers - Xerces DOM and Xerces SAX. The benchmark applications are quite simple. They first read an XML document into memory then invoke parser routines to parse the document for a large number of iterations and the parsing throughput is calculated by dividing the file size by the average latency of each parsing iteration. For SAX parsing, the content handler is set to NULL. Several XML document in varying sizes, tagginess, and structural complexity were chosen for the benchmark. The results, produced by a two-year old 1.7GHz Pentium M laptop, are summarized in Figure 2. The complete report, which includes test setup, methodology, and code, is available online at http://vtd-xml.sf.net/benchmark.html.

The benchmark results are quite consistent with the well-known performance characteristics of DOM and SAX. First of all, the raw parsing throughput of SAX, at between 20MB/sec~30MB/sec, is actually quite respectable. However, by not exposing the inherent structural information, SAX essentially treats XML as CSV with "pointy brackets," often making it prohibitively difficult to use and unsuitable as a general-purpose XML parser. DOM, on the other hand, lets developers navigate in-memory tree structure. But the benchmark results also show that, except for very small files, DOM is typically three to five times slower than SAX. Because DOM parsers internally usually use SAX to tokenize XML, by comparing the performance differences, it's clear that building the in-memory tree structure is where the bottleneck is. In other words, allocating all the objects and connecting them together dramatically slow everything down. As the next step, I ran JProfiler (from EJ-technology) to identify where DOM and SAX parsing spend all the CPU cycles. The results confirmed my early suspicion that the overhead of object allocation overwhelmingly bottlenecks DOM parsing and, to a lesser (but still significant) degree, SAX parsing as well.

Some readers may question that DOM - only an API specification - doesn't preclude efficient, less object-intensive, implementations. Not so. The DOM spec is in fact based entirely on the assumption that the hierarchical structure consists entirely of objects exposing the Node interface. The most any DOM implementation can do is alter the implementation of the object sitting behind the Node interface, and it's impossible to rip away the objects altogether. So, if the object creation is the main culprit, the DOM spec itself is the accomplice that makes any performance-oriented optimizations prohibitively difficult. And this is why, after the past eight years and countless efforts by all major IT companies, every implementation of DOM has only seen marginal performance improvement.

Binary XML Solves the Wrong Problem
Can binary XML fundamentally solve the performance issue of XML? Well, since the performance issue belongs to XML parsers, a better question to ask is whether binary XML can help make parsing more efficient. The answer has two parts - one for SAX, the other for DOM.

Binary XML can improve the raw SAX parsing speed. There are a lot of XML-specific syntax features that binary XML can choose not to inherit. For example, binary XML can replace the ending tags with something more efficient, entirely avoiding attributes so SAX parsing no longer does uniqueness checking, or find other ways to represent the document structure. There are many ways to trim CPU cycles off SAX's tokenization cost. And proponents of binary XML often cites up to a 10x speedup for the binary XML version of SAX over text XML.

But they ignored the simple fact that SAX has serious usability issues. The awkward forward-only nature of SAX parsing not only requires extra implementation effort, but also incurs performance penalties when the document structure becomes only slightly complex. If developers choose not to scan the document multiple times, they'll have to buffer the document or build custom object models. In addition, SAX doesn't work well with XPath, and in general can't drive XSLT processing (binary XML has to be transformed as well, right?). So pointing to SAX's raw performance for binary XML as a proof of binary XML's merit is both unfair and misleading. The bottom line: for a XML processing model to be broadly useful, the API must expose the inherent structure of XML.

Unfortunately, binary XML won't make much difference improving DOM parsing for the simple reason that DOM parsing generally spends most CPU cycles building in-memory tree structure, not on tokenization. So the speedup of DOM due to faster SAX parsing is quite limited. In other words, DOM parsing for binary XML will be slow as well. And going one step further, object-graph based parser will have the same kind of performance issue for virtually any data format such as DCOM, RMI, or CORBA. XML is merely the scapegoat.

Reduce Object Creation - the Correct Approach
From my benchmark and profiling results, it's quite easy to see that the best way to remove the performance bottleneck in XML parsing is to reduce the object-creation cost of building the in-memory hierarchical structure. And the possibilities are, in fact, endless, and only limited by the imagination. Good solutions can and will emerge. And among them is VTD-XML (http://vtd-xml.sf.net). To achieve high performance, VTD-XML approaches XML parsing through the two object-less steps: (1) non-extractive tokenization and (2) hierarchical-directory-based random access. The result: VTD-XML drastically reduces the number of objects while still exporting the hierarchical structure to application developers and significantly outperforming SAX. (See Figure 3)

Summary
To summarize, the right way is to find better parsing techniques beyond DOM and SAX that significantly reduce the object-creation cost of building XML's tree structure. Binary XML won't fundamentally solve XML's performance issue because the problem belongs to XML parsers, not XML.

More Stories By Jimmy Zhang

Jimmy Zhang is a cofounder of XimpleWare, a provider of high performance XML processing solutions. He has working experience in the fields of electronic design automation and Voice over IP for a number of Silicon Valley high-tech companies. He holds both a BS and MS from the department of EECS from U.C. Berkeley.

Comments (10) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
RTL 09/08/06 10:44:16 AM EDT

Sure the network may be "fast enough" from a raw mbps perspective. The problem is, in a real-world scenario your application may not be the only user of that bandwidth. And if everyone is stuffing the network full of data bloated with excessive overhead (such as what XML specifies), you can choke the network. It's not rocket science -- cut the data-bloat on the network in half and you double the capacity/performance. Even if the network is not running at full capacity, cutting the traffic in half (via more efficient data transport protocols) makes everything run more smoothly and doubles the lifetime of the existing infrastructure (i.e., it will take twice as long to fill up), ultimately reducing cost.

jzhang 09/07/06 09:46:36 PM EDT

This article is entirely about parsing performance, not the size of XML... the problem is that parsing can't keep up with the speed of the network...
XmL is not slow, *xml parsers* are slow

RTL 09/07/06 03:32:13 PM EDT

This article seems to miss the point of the performance critism of XML. The problem is not so much one of parsing (although that is an issue), but network bandwidth. From a bandwith perspective, XML is just about the world's most inefficient protocol one could devise for transmitting data. If binary XML could cut the file size even just in half, that doubles an applications network performance.

There is no reason why you could not perform the same job as text-XML with binary-XML. You would gain significant performance benefits with the only downside being that you lose immediate human readability. You know... sometimes it seems that XML was embraced and championed by a lot of young, wet-behind-the-ears HTML hackers who didn't know how to read hex. :)

alucinor 08/31/06 05:32:15 PM EDT

> queZZtion commented on the 31 Aug 2006:
> MSFT submitted OpenXML to ECMA, anyone
> know if they plan to submit it to ISO too?

Microsoft's Open XML is just a delay tactic -- their old strategy of vaporware vaporware vaporware ... that sometimes materializes at the last second, never as grand as promised, but having accomplished its goal of causing everyone to say "Let's wait and see what Microsoft will do first!"

And MOX is Latin for "soon". Coincidence?!

queZZtion 08/31/06 05:30:54 PM EDT

MSFT submitted OpenXML to ECMA, anyone know if they plan to submit it to ISO too?

An0n 08/31/06 05:29:34 PM EDT

HR-XML Anyone? View link: http://www.hr-xml.org/

Jimmy Zhang 08/02/06 09:57:28 PM EDT

Responding to your comment #1

It doesn't see that we are disagreeing, because if the CPU is devoting much cycles on application logic, then there is less incentive going to binary XML with the hope of speeding up overall app performance

Concerning your comment #2, built-in indexing is not just for binary XML, it can be done for XML as well, so this argument is quite weak... or do I misintepret anything??

Henrik 07/31/06 04:56:45 AM EDT

I don't quite buy your argument.

1) You are only looking at a single process assuming that the CPU has nothing better to do than parsing and processing. On a server any performance improvement will help server throughput.

2) The main benefit of a binary format would be built in indexing. If done properly DOM wouldn't have to build much of a structure at all but rather work directly on the binary image and extract nodes on request.

3) I don't really see a SAX parser getting a drastic improvement though.

XML News Desk 07/30/06 11:37:30 AM EDT

Since its inception, XML has been criticized for the overhead it introduces into the enterprise infrastructure. Business data encoded in XML takes five to 10 times more bandwidth to transmit in the network and proportionally more disk space to store. While most agree that verbosity is inherent to XML's way of encoding information (e.g., extensive use of tags and pointy brackets), the explanation of XML's perceived performance issue remains inconclusive. A popular belief is that since XML is human-readable text, it has to be slow and inefficient. And by the same token, proponents of binary XML seem to suggest that a compact encoding format, most noticeably the binary XML, would automatically lead to better processing performance.

XML News Desk 07/30/06 08:54:25 AM EDT

Since its inception, XML has been criticized for the overhead it introduces into the enterprise infrastructure. Business data encoded in XML takes five to 10 times more bandwidth to transmit in the network and proportionally more disk space to store. While most agree that verbosity is inherent to XML's way of encoding information (e.g., extensive use of tags and pointy brackets), the explanation of XML's perceived performance issue remains inconclusive. A popular belief is that since XML is human-readable text, it has to be slow and inefficient. And by the same token, proponents of binary XML seem to suggest that a compact encoding format, most noticeably the binary XML, would automatically lead to better processing performance.

@MicroservicesExpo Stories
By now, every company in the world is on the lookout for the digital disruption that will threaten their existence. In study after study, executives believe that technology has either already disrupted their industry, is in the process of disrupting it or will disrupt it in the near future. As a result, every organization is taking steps to prepare for or mitigate unforeseen disruptions. Yet in almost every industry, the disruption trend continues unabated.
SYS-CON Events announced today that HTBase will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. HTBase (Gartner 2016 Cool Vendor) delivers a Composable IT infrastructure solution architected for agility and increased efficiency. It turns compute, storage, and fabric into fluid pools of resources that are easily composed and re-composed to meet each application’s needs. With HTBase, companies can quickly prov...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In his Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, will explore t...
SYS-CON Events announced today that Auditwerx will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Auditwerx specializes in SOC 1, SOC 2, and SOC 3 attestation services throughout the U.S. and Canada. As a division of Carr, Riggs & Ingram (CRI), one of the top 20 largest CPA firms nationally, you can expect the resources, skills, and experience of a much larger firm combined with the accessibility and attent...
Everyone wants to use containers, but monitoring containers is hard. New ephemeral architecture introduces new challenges in how monitoring tools need to monitor and visualize containers, so your team can make sense of everything. In his session at @DevOpsSummit, David Gildeh, co-founder and CEO of Outlyer, will go through the challenges and show there is light at the end of the tunnel if you use the right tools and understand what you need to be monitoring to successfully use containers in your...
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
What if you could build a web application that could support true web-scale traffic without having to ever provision or manage a single server? Sounds magical, and it is! In his session at 20th Cloud Expo, Chris Munns, Senior Developer Advocate for Serverless Applications at Amazon Web Services, will show how to build a serverless website that scales automatically using services like AWS Lambda, Amazon API Gateway, and Amazon S3. We will review several frameworks that can help you build serverle...
The IT industry is undergoing a significant evolution to keep up with cloud application demand. We see this happening as a mindset shift, from traditional IT teams to more well-rounded, cloud-focused job roles. The IT industry has become so cloud-minded that Gartner predicts that by 2020, this cloud shift will impact more than $1 trillion of global IT spending. This shift, however, has left some IT professionals feeling a little anxious about what lies ahead. The good news is that cloud computin...
Lots of cloud technology predictions and analysis are still dealing with future spending and planning, but there are plenty of real-world cloud use cases and implementations happening now. One approach, taken by stalwart GE, is to use SaaS applications for non-differentiated uses. For them, that means moving functions like HR, finance, taxes and scheduling to SaaS, while spending their software development time and resources on the core apps that make GE better, such as inventory, planning and s...
After more than five years of DevOps, definitions are evolving, boundaries are expanding, ‘unicorns’ are no longer rare, enterprises are on board, and pundits are moving on. Can we now look at an evolution of DevOps? Should we? Is the foundation of DevOps ‘done’, or is there still too much left to do? What is mature, and what is still missing? What does the next 5 years of DevOps look like? In this Power Panel at DevOps Summit, moderated by DevOps Summit Conference Chair Andi Mann, panelists l...
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service.
The rise of containers and microservices has skyrocketed the rate at which new applications are moved into production environments today. While developers have been deploying containers to speed up the development processes for some time, there still remain challenges with running microservices efficiently. Most existing IT monitoring tools don’t actually maintain visibility into the containers that make up microservices. As those container applications move into production, some IT operations t...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm.
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
As Enterprise business moves from Monoliths to Microservices, adoption and successful implementations of Microservices become more evident. The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Documenting hurdles and problems for the use of Microservices will help consultants, architects and specialists to avoid repeating the same mistakes and learn how and when to use (or not use) Microservices at the enterprise level. The circumstance w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud enviro...
@DevOpsSummit has been named the ‘Top DevOps Influencer' by iTrend. iTrend processes millions of conversations, tweets, interactions, news articles, press releases, blog posts - and extract meaning form them and analyzes mobile and desktop software platforms used to communicate, various metadata (such as geo location), and automation tools. In overall placement, @DevOpsSummit ranked as the number one ‘DevOps Influencer' followed by @CloudExpo at third, and @MicroservicesE at 24th.
In his General Session at 16th Cloud Expo, David Shacochis, host of The Hybrid IT Files podcast and Vice President at CenturyLink, investigated three key trends of the “gigabit economy" though the story of a Fortune 500 communications company in transformation. Narrating how multi-modal hybrid IT, service automation, and agile delivery all intersect, he will cover the role of storytelling and empathy in achieving strategic alignment between the enterprise and its information technology.
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations might...
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" ...