Welcome!

Microservices Expo Authors: Carmen Gonzalez, Liz McMillan, Yeshim Deniz, Elizabeth White, Gopala Krishna Behara

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Open Source Cloud, Agile Computing, Apache

@CloudExpo: Article

The Cure for the Common Cloud-Based Big Data Initiative

Understanding how to work with Big Data

There is no doubt that Big Data holds infinite promise for a range of industries. Better visibility into data across various sources enables everything from insight into saving electricity to agricultural yield to placement of ads on Google. But when it comes to deriving value from data, no industry has been doing it as long or with as much rigor as clinical researchers.

Unlike other markets that are delving into Big Data for the first time and don't know where to begin, drug and device developers have spent years refining complex processes for asking very specific questions with clear purposes and goals. Whether using data for designing an effective and safe treatment for cholesterol, or collecting and mining data to understand proper dosage of cancer drugs, life sciences has had to dot every "i" and cross every "t" in order to keep people safe and for new therapies to pass muster with the FDA. Other industries are now marveling at a new ability to uncover information about efficiencies and cost savings, but - with less than rigorous processes in place - they are often shooting in the dark or only scratching the surface of what Big Data offers.

Drug developers today are standing on the shoulders of those who created, tested and secured FDA approval for treatments involving millions of data points (for one drug alone!) without the luxury of the cloud or sophisticated analytics systems. These systems have the potential to make the best data-driven industry even better. This article will outline key lessons and real-world examples of what other industries can and should learn from life sciences when it comes to understanding how to work with Big Data.

What Questions to Ask, What Data to Collect
In order to gain valuable insights from Big Data, there are two absolute requirements that must be met - understanding both what questions to ask and what data to collect. These two components are symbiotic, and understanding both fully is difficult, requiring both domain expertise and practical experience.

In order to know what data to collect, you first must know the types of questions that you're going to want to ask - often an enigma. With the appropriate planning and experience-based guesses, you can often make educated assumptions. The trick to collecting data is that you need to collect enough to answer questions, but if you collect too much then you may not be able to distill the specific subset that will answer your questions. Also, explicit or inherent cost can prevent you from collecting all possible data, in which case you need to carefully select which areas to collect data about.

Let's take a look at how this is done in clinical trials. Say you're designing a clinical study that will analyze cancer data. You may not have specific questions when the study is being designed, but it's reasonable to assume that you'll want to collect data related to commonly impacted readings for the type of cancer and whatever body system is affected, so that you have the right information to analyze when it comes time.

You may also want to collect data unrelated to the specific disease that subsequent questions will likely require, such as information on demographics and medications that the patient is taking that are different from the treatment. During the post-study data analysis, questions on these areas often arise, even though the questions aren't initially apparent. Thus clinical researchers have adopted common processes for collecting data on demographics and concomitant medications. Through planning and experience, you can also identify areas that do not need to be collected for each study. For example, if you're studying lung cancer, collecting cognitive function data is probably unrelated.

How can other industries anticipate what questions to ask, as is done in life sciences? Well, determine a predefined set of questions that are directly related to the goal of the data analysis. Since you will not know all of the questions until after the data collection have started, it's important to 1) know the domain, and 2) collect any data you'll need to answer the likely questions that could come up.

Also, clinical researchers have learned that questions can be discovered automatically. There are data mining techniques that can uncover statistically significant connections, which in effect are raising questions that can be explored in more detail afterwards. An analysis can be planned before data is collected, but not actually be run until afterwards (or potentially during), if the appropriate data is collected.

One other area that has proven to be extremely important to collect is metadata, or data about the data - such as, when it was collected, where it was collected, what instrumentation was used in the process and what calibration information was available. All of this information can be utilized later on to answer a lot of potentially important questions. Maybe there was a specific instrument that was incorrectly configured and all the resulting data that it recorded is invalid. If you're running an ad network, maybe there's a specific web site where your ads are run that are gaming the system trying to get you to pay more. If you're running a minor league team, maybe there's a specific referee that's biased, which you can address for subsequent games. Or, if you're plotting oil reserves in the Gulf of Mexico, maybe there are certain exploratory vessels that are taking advantage of you. In all of these cases, without the appropriate metadata, it'd be impossible to know where real problems reside.

Identifying Touch Points to Be Reviewed Along the Way
There are ways to specify which types of analysis can be performed, even while data is being collected, that can affect either how data will continue to be collected or the outcome as a whole.

For example, some clinical studies run what's called interim analysis while the study is in progress. These interim analyses are planned, and the various courses that can be used afterwards are well defined, but the results afterward are statistically usable. This is called an adaptive clinical trial, and there are a lot of studies that are being performed to determine more effective and useful ways that these can be done in the future. The most important aspect of these is preventing biases, and this is something that has been well understood and tested by the pharmaceutical community over the past several decades. Simply understanding what's happening during the course of a trial, or how it affects the desired outcome, can actually bias the results.

The other key factor is that the touch points are accessible to everybody who needs the data. For example, if you have a person in the field, then it's important to have him or her access the data in a format that's easily consumable to them - maybe through an iPad or an existing intranet portal. Similarly, if you have an executive that needs to understand something at a high level, then getting it to them in an easily consumable executive dashboard is extremely important.

As the life sciences industry has learned, if the distribution channels of the analytics aren't seamless and frictionless, then they won't be utilized to their fullest extent. This is where cloud-based analytics become exceptionally powerful - the cloud makes it much easier to integrate analytics into every user's day. Once each user gets the exact information they need, effortlessly, they can then do their job better and the entire organization will work better - regardless of how and why the tools are being used.

Augmenting Human Intuition
Think about the different types of tools that people use on a daily basis. People use wrenches to help turn screws, cars to get to places faster and word processers to write. Sure, we can use our hands or walk, but we're much more efficient and better when we can use tools.

Cloud-based analytics is a tool that enables everybody in an organization to perform more efficiently and effectively. The first example of this type of augmentation in the life sciences industry is alerting. A user tells the computer what they want to see, and then the computer alerts them via email or text message when the situation arises. Users can set rules for the data it wants to see, and then the tools keep on the lookout to notify the user when the data they are looking for becomes available.

Another area the pharmaceutical industry has thoroughly explored is data-driven collaboration techniques. In the clinical trial process, there are many different groups of users: those who are physically collecting the data (investigators), others who are reviewing it to make sure that it's clean (data managers), and also people who are stuck in the middle (clinical monitors). Of course there are many other types of users, but this is just a subset to illustrate the point. These different groups of users all serve a particular purpose relating to the overall collection of data and success of the study. When the data looks problematic or unclean, the data managers will flag it for review, which the clinical monitors can act on.

What's unique about the way that life sciences deals with this is that they've set up complex systems and rules to make sure that the whole system runs well. The tools associated around these processes help augment human intuition through alerting, automated dissemination and automatic feedback. The questions aren't necessarily known at the beginning of a trial, but as the data is collected, new questions evolve and the tools and processes in place are built to handle the changing landscape.

No matter what the purpose of Big Data analytics, any organization can benefit from the mindset of cloud-based analytics as a tool that needs to consistently be adjusted and refined to meet the needs of users.

Ongoing Challenges of Big Data Analytics
Given this history with data, one would expect that drug and device developers would be light years ahead when it comes to leveraging Big Data technologies - especially given that the collection and analytics of clinical data is often a matter of life and death. But while they have much more experience with data, the truth is that life sciences organizations are just now starting to integrate analytics technologies that will enable them to work with that data in new, more efficient ways - no longer involving billions of dollars a year, countless statisticians, archaic methods, and, if we're being honest, brute force. As new technology becomes available, the industry will continue to become more and more seamless. In the meantime, other industries looking to wrap their heads around the Big Data challenge should look to life sciences as the starting point for best practices in understanding how and when to ask the right questions, monitoring data along the way and selecting tools that improve the user experience.

More Stories By Rick Morrison

Rick Morrison is CEO and co-founder of Comprehend Systems. Prior to Comprehend Systems, he was the Chief Technology Officer of an Internet-based data aggregator, where he was responsible for product development and operations. Prior to that, he was at Integrated Clinical Systems, where he led the design and implementation of several major new features. He also proposed and led a major infrastructure redesign, and introduced new, streamlined development processes. Rick holds a BS in Computer Science from Carnegie Mellon University in Pittsburgh, Pennsylvania.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
@DevOpsSummit at Cloud taking place June 6-8, 2017, at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long developm...
SYS-CON Events announced today that Catchpoint Systems, Inc., a provider of innovative web and infrastructure monitoring solutions, has been named “Silver Sponsor” of SYS-CON's DevOps Summit at 18th Cloud Expo New York, which will take place June 7-9, 2016, at the Javits Center in New York City, NY. Catchpoint is a leading Digital Performance Analytics company that provides unparalleled insight into customer-critical services to help consistently deliver an amazing customer experience. Designed ...
SYS-CON Events announced today that Outlyer, a monitoring service for DevOps and operations teams, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Outlyer is a monitoring service for DevOps and Operations teams running Cloud, SaaS, Microservices and IoT deployments. Designed for today's dynamic environments that need beyond cloud-scale monitoring, we make monitoring effortless so you...
Cloud Expo, Inc. has announced today that Andi Mann and Aruna Ravichandran have been named Co-Chairs of @DevOpsSummit at Cloud Expo 2017. The @DevOpsSummit at Cloud Expo New York will take place on June 6-8, 2017, at the Javits Center in New York City, New York, and @DevOpsSummit at Cloud Expo Silicon Valley will take place Oct. 31-Nov. 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
As Enterprise business moves from Monoliths to Microservices, adoption and successful implementations of Microservices become more evident. The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Documenting hurdles and problems for the use of Microservices will help consultants, architects and specialists to avoid repeating the same mistakes and learn how and when to use (or not use) Microservices at the enterprise level. The circumstance w...
SYS-CON Events announced today that CA Technologies has been named “Platinum Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY, and the 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business – from apparel to energy – is being rewritten by software. From ...
DevOps and microservices are permeating software engineering teams broadly, whether these teams are in pure software shops but happen to run a business, such Uber and Airbnb, or in companies that rely heavily on software to run more traditional business, such as financial firms or high-end manufacturers. Microservices and DevOps have created software development and therefore business speed and agility benefits, but they have also created problems; specifically, they have created software securi...
The emerging Internet of Everything creates tremendous new opportunities for customer engagement and business model innovation. However, enterprises must overcome a number of critical challenges to bring these new solutions to market. In his session at @ThingsExpo, Michael Martin, CTO/CIO at nfrastructure, outlined these key challenges and recommended approaches for overcoming them to achieve speed and agility in the design, development and implementation of Internet of Everything solutions with...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In his general session at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, will explore...
This week's news brings us further reminders that if you're betting on cloud, you're headed in the right direction. The cloud is growing seven times faster than the rest of IT, according to IDC, with a 25% spending increase just from 2016 to 2017. SaaS still leads the pack, with an estimated two-thirds of public cloud spending going that way. Large enterprises, with more than 1,000 employees, are predicted to account for more than half of cloud spending and have the fastest annual growth rate.
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of Soli...
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" ...
After more than five years of DevOps, definitions are evolving, boundaries are expanding, ‘unicorns’ are no longer rare, enterprises are on board, and pundits are moving on. Can we now look at an evolution of DevOps? Should we? Is the foundation of DevOps ‘done’, or is there still too much left to do? What is mature, and what is still missing? What does the next 5 years of DevOps look like? In this Power Panel at DevOps Summit, moderated by DevOps Summit Conference Chair Andi Mann, panelists l...
When building DevOps or continuous delivery practices you can learn a great deal from others. What choices did they make, what practices did they put in place, and how did they connect the dots? At Sonatype, we pulled together a set of 21 reference architectures for folks building continuous delivery and DevOps practices using Docker. Why? After 3,000 DevOps professionals attended our webinar on "Continuous Integration using Docker" discussing just one reference architecture example, we recogn...
Hardware virtualization and cloud computing allowed us to increase resource utilization and increase our flexibility to respond to business demand. Docker Containers are the next quantum leap - Are they?! Databases always represented an additional set of challenges unique to running workloads requiring a maximum of I/O, network, CPU resources combined with data locality.
Thanks to Docker and the DevOps revolution, microservices have emerged as the new way to build and deploy applications — and there are plenty of great reasons to embrace the microservices trend. If you are going to adopt microservices, you also have to understand that microservice architectures have many moving parts. When it comes to incident management, this presents an important difference between microservices and monolithic architectures. More moving parts mean more complexity to monitor an...
In recent years, containers have taken the world by storm. Companies of all sizes and industries have realized the massive benefits of containers, such as unprecedented mobility, higher hardware utilization, and increased flexibility and agility; however, many containers today are non-persistent. Containers without persistence miss out on many benefits, and in many cases simply pass the responsibility of persistence onto other infrastructure, adding additional complexity.
Docker containers have brought great opportunities to shorten the deployment process through continuous integration and the delivery of applications and microservices. This applies equally to enterprise data centers as well as the cloud. In his session at 20th Cloud Expo, Jari Kolehmainen, founder and CTO of Kontena, will discuss solutions and benefits of a deeply integrated deployment pipeline using technologies such as container management platforms, Docker containers, and the drone.io Cl tool...
The rise of containers and microservices has skyrocketed the rate at which new applications are moved into production environments today. While developers have been deploying containers to speed up the development processes for some time, there still remain challenges with running microservices efficiently. Most existing IT monitoring tools don’t actually maintain visibility into the containers that make up microservices. As those container applications move into production, some IT operations t...
In 2014, Amazon announced a new form of compute called Lambda. We didn't know it at the time, but this represented a fundamental shift in what we expect from cloud computing. Now, all of the major cloud computing vendors want to take part in this disruptive technology. In his session at 20th Cloud Expo, John Jelinek IV, a web developer at Linux Academy, will discuss why major players like AWS, Microsoft Azure, IBM Bluemix, and Google Cloud Platform are all trying to sidestep VMs and containers...