Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Yeshim Deniz, Carmen Gonzalez, Pat Romanski

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Containers Expo Blog, Release Management , Apache

@CloudExpo: Blog Post

Cloudera Impala – Closing the Near Real Time Gap Working with Big Data

Building data structures and loading data

By

On October 24, 2012 Cloudera announced the release of Cloudera Impala and the commercial support subscription service of Cloudera Enterprise Real Time Query (RTQ). During the Hadoop World/STRATA Conference in NYC, I was invited over to see a demonstration. Impala is a SQL based Real Time Query/Ad Hoc query engine built on top of HDFS or Hbase. As I watched the demonstration unfold, I wondered if one of the remaining technology gaps in the NOSQL arsenal had been closed.  What gap you ask? Near Real Time Analytics on a NOSQL stack. Working with customers across the Cyber Security customer space, not only do they face the familiar BIGDATA horsemen of the apocalypse: Volume, Velocity and Variety but one more large challenge crept in: Time (V3T).  The Near Real Time Analysis/Near Real Time Analytic capability that Cloudera Impala provides is essential in many high value use cases associated with Cyber Security: comparing current activity with observed historical norms, correlation of many disparate data sources/enrichment and automated threat detection algorithms.

When the demonstration concluded, the Cloudera representatives and I discussed the potential of performing an informal independent evaluation of Cloudera Impala against some of the common Real Time/Near Real Time use cases in Cyber Security. I agreed to step up and perform an independent evaluation as well as developing a demonstration platform for FedCyber 2012 (almost three weeks hence for inquiring minds).  So let us set the field: a new BETA technology, NO prior exposure to the technology or documentation, a vendor making promises, addressing a large technology gap and three weeks to implement, seemed straight forward; no pressure.

The day after I returned from the STRATA Conference, I returned to my office and provisioned four Virtual Machines in order to build the Impala demonstration. As a committer/contributor for SherpaSurfing an open source Cyber Security solution, I have an abundance of data sets, enrichment sources, Hive data structures and services.  Given the amount of time and the audience for FedCyber 2012, I decided to focus on some Intrusion Detection and Netflow related use cases for the demonstration. The data sets for the demonstration included base data sets:  20 million Netflow events, 8 million Intrusion Detection System events and enrichment: Geographic, Blacklist, Whitelist and Protocol related information. Each of the selected uses cases for this demonstration is critical to the Perform Near-Real Time Network Analysis domain in Cyber Security. The name for the demonstration system was decided to be the Impala Mission Demonstration Platform (IMDP).  The IMDP was implemented based on vendor recommendations with no tuning or optimization.

The IMDP effort provided me with my first opportunity to work with Cloudera Manager. Although this post is focused on Cloudera Impala I would be remiss not to mention Cloudera Manager. I have worked with Hadoop since 1.0 and built more than a few clusters over the years. I used the installation and configuration guides provided with Cloudera Impala and followed the recommendations. One of the first recommendations was use of the Cloudera Manager. Using the Cloudera Manager (CDH 4.1), I was able to roll out a four node cluster in two hours.  I was able to discover the hosts, manage services and provision them in accordance with the IMDP deployment plan. The deployment plan consisted of:

  • node 1 – hbase, hdfs, impala,  mapreduce
  • node2 – hbase, hdfs, impala,  mapreduce
  • node3 – hbase(region server, master), hdfs(namenode), impala(impalad, statestore),  mapreduce(job tracker, tasktracker) , hue, oozie and zookeeper
  • node4 – Application Tier, Cloudera Manager

The Cloudera Manager saved at least two days of effort in deploying the cluster, the tight integration with the support portal, comprehensive help and one place to work with all properties of the entire cluster and view space consumption metrics; verdict on Cloudera Manager: Cloudera masterful, bold stroke, thumbs up.

Now that the cluster build-out completed; I shifted attention to deploying and configuring the Cloudera Impala service.  Using Cloudera Manager, I deployed Impala on three nodes: three instances of Impalad and one impala state store, in a matter of minutes. I completed the deployment and configuration of the Hive MetaStore. Keeping in mind this is a BETA; the documentation was complete, but fragmented on deployment and configuration (HIVE MetaStore portion); verdict on impala deployment and configuration: solid for a BETA (needs an example hive-site.xml, configuration guide needs better flow).

At this point all configuration and deployment was completed, attention turned to building data structures and loading data. I took the Data Definition Language (DDL) scripts or data structures for ten data sources and enrichment; ported them over to Hive and tested them in less than four hours. It is worthy of mention that the data sources for this demonstration are large flat tables: netflow and intrusion detection system. Cloudera Impala uses HIVE as an Extract Transform Load (ETL) engine, using Hive I defined all of the data structures in source files which were sourced using hive shell: created a database (Sherpa). Hive was then used to load data into the tables that were just created. Creating data structures in Hive was simple as usual and loading data sets was quick (20 million netflow events in 57 seconds). Logging into impala-shell, issued a refresh of the MetaStore and I was working with data. I performed verification of the data load, all data loaded and no issues were revealed. One area of potential improvement would be more comprehensive messages on load failure. Defining the data structures and loading data using Hive was nothing new; verdict:  really good; easy to use, easy to load, but need to improve failed load messages.

Finally, we moved on to the most interesting stage which is using Cloudera Impala in a series of Real Time Query (RTQ) scenarios that are common across the Cyber Security customer space. The real world scenarios selected come from the perform netflow analysis set of use case(s). In each of these scenarios, the exact same queries were executed on the same cluster using Hive and then Impala against the same data structures (database and tables).  In the Hive approach, we traverse the batch processing stack and with Impala we traverse the Real Time Query (RTQ) stack performing a series of analytics. In the first use case, I ran a five tuple (sip, sport, dip, dport, protocol) summary covering bytes per packet, summing bytes and packets for a 20 million event set resulted in: identical result sets, Hive 82 seconds – Impala 6 seconds.   In the second use case, I performed a summary of destination ports where the source port is 80 which resulted in: identical result sets, Hive 57 seconds, Impala 5 seconds. In the third use case, I performed correlation between netflow and intrusion detection systems, correlating netflow with intrusion detection events for several hours which resulted in: identical result sets, Hive 40 seconds, Impala sub-second.  Finally, for FedCyber 2012, I developed a java based situational awareness dashboard which connected to Cloudera Impala via ODBC and executed analytics performing: correlation of blacklists, Intrusion Detection, Netflow, statistical cubes for ten hours with a refresh of every five seconds without failure or issue.  The ODBC implementation easily provided the ability to export data to desktop tools (using ODBC) and common BI tools as advertised. Developing and Using Cloudera Impala verdict: This is as advertised; easy to use, easy to implement on, very fast, very flexible and more than capable of running real time analytics. The Impala shell is limited but much of the demonstration work was done using result sets so it was not an impediment.

In summation, I have worked for over a decade across the vast BIGDATA technology space covering Legacy Relational Database, Data Warehouse, and NOSQL; Cloudera Impala proved more than capable of running near real time analytics and providing mission relevance to customers with a Near Real Time (NRT) requirement.  Based on my initial review Cloudera Impala appears to be a bold step in closing the gap of near real time analytics on a NOSQL stack. I did encounter some minor problems, but the few problems and limitations that were encountered in this demonstration were documented and published in the known issues document so they will not be shared; none were show stoppers.

The notes, details and all of the lessons learned, data structures and the configuration guide from the demonstration are being published out on Github under SherpaSurfing in the coming days. These documents cover everything in detail and will enable developers to replicate the demonstration platform and get a jump start on Cloudera Impala.  Finally, I would like to thank two contributors: Hanh Le, Robert Webb and Six3 Systems for helping me pull this off.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder and partner at Cognitio Corp and publsher of CTOvision.com

@MicroservicesExpo Stories
Culture is the most important ingredient of DevOps. The challenge for most organizations is defining and communicating a vision of beneficial DevOps culture for their organizations, and then facilitating the changes needed to achieve that. Often this comes down to an ability to provide true leadership. As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership abi...
The essence of cloud computing is that all consumable IT resources are delivered as services. In his session at 15th Cloud Expo, Yung Chou, Technology Evangelist at Microsoft, demonstrated the concepts and implementations of two important cloud computing deliveries: Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). He discussed from business and technical viewpoints what exactly they are, why we care, how they are different and in what ways, and the strategies for IT to transi...
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service.
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm.
As software becomes more and more complex, we, as software developers, have been splitting up our code into smaller and smaller components. This is also true for the environment in which we run our code: going from bare metal, to VMs to the modern-day Cloud Native world of containers, schedulers and micro services. While we have figured out how to run containerized applications in the cloud using schedulers, we've yet to come up with a good solution to bridge the gap between getting your contain...
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningf...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In his Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, will explore t...
DevOps has often been described in terms of CAMS: Culture, Automation, Measuring, Sharing. While we’ve seen a lot of focus on the “A” and even on the “M”, there are very few examples of why the “C" is equally important in the DevOps equation. In her session at @DevOps Summit, Lori MacVittie, of F5 Networks, explored HTTP/1 and HTTP/2 along with Microservices to illustrate why a collaborative culture between Dev, Ops, and the Network is critical to ensuring success.
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
Everyone wants to use containers, but monitoring containers is hard. New ephemeral architecture introduces new challenges in how monitoring tools need to monitor and visualize containers, so your team can make sense of everything. In his session at @DevOpsSummit, David Gildeh, co-founder and CEO of Outlyer, will go through the challenges and show there is light at the end of the tunnel if you use the right tools and understand what you need to be monitoring to successfully use containers in your...
What if you could build a web application that could support true web-scale traffic without having to ever provision or manage a single server? Sounds magical, and it is! In his session at 20th Cloud Expo, Chris Munns, Senior Developer Advocate for Serverless Applications at Amazon Web Services, will show how to build a serverless website that scales automatically using services like AWS Lambda, Amazon API Gateway, and Amazon S3. We will review several frameworks that can help you build serverle...
The IT industry is undergoing a significant evolution to keep up with cloud application demand. We see this happening as a mindset shift, from traditional IT teams to more well-rounded, cloud-focused job roles. The IT industry has become so cloud-minded that Gartner predicts that by 2020, this cloud shift will impact more than $1 trillion of global IT spending. This shift, however, has left some IT professionals feeling a little anxious about what lies ahead. The good news is that cloud computin...
SYS-CON Events announced today that HTBase will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. HTBase (Gartner 2016 Cool Vendor) delivers a Composable IT infrastructure solution architected for agility and increased efficiency. It turns compute, storage, and fabric into fluid pools of resources that are easily composed and re-composed to meet each application’s needs. With HTBase, companies can quickly prov...
An overall theme of Cloud computing and the specific practices within it is fundamentally one of automation. The core value of technology is to continually automate low level procedures to free up people to work on more value add activities, ultimately leading to the utopian goal of full Autonomic Computing. For example a great way to define your plan for DevOps tool chain adoption is through this lens. In this TechTarget article they outline a simple maturity model for planning this.
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations might...
The rise of containers and microservices has skyrocketed the rate at which new applications are moved into production environments today. While developers have been deploying containers to speed up the development processes for some time, there still remain challenges with running microservices efficiently. Most existing IT monitoring tools don’t actually maintain visibility into the containers that make up microservices. As those container applications move into production, some IT operations t...
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
Software development is a moving target. You have to keep your eye on trends in the tech space that haven’t even happened yet just to stay current. Consider what’s happened with augmented reality (AR) in this year alone. If you said you were working on an AR app in 2015, you might have gotten a lot of blank stares or jokes about Google Glass. Then Pokémon GO happened. Like AR, the trends listed below have been building steam for some time, but they’ll be taking off in surprising new directions b...
@DevOpsSummit has been named the ‘Top DevOps Influencer' by iTrend. iTrend processes millions of conversations, tweets, interactions, news articles, press releases, blog posts - and extract meaning form them and analyzes mobile and desktop software platforms used to communicate, various metadata (such as geo location), and automation tools. In overall placement, @DevOpsSummit ranked as the number one ‘DevOps Influencer' followed by @CloudExpo at third, and @MicroservicesE at 24th.