Welcome!

Microservices Expo Authors: Pat Romanski, Dalibor Siroky, Stackify Blog, Elizabeth White, Liz McMillan

Related Topics: Microservices Expo, Java IoT, Industrial IoT, Microsoft Cloud, Machine Learning , Apache

Microservices Expo: Article

Intelligent Complex Event Processing with Artificial Neural Network

Solve highly complex problems in real or near real time

In the current world, data is continuously being generated across various layers of organizations and environment due to changes in the system states or due to the occurrence of new events. These changes in the state of the existing system can happen due to the arrival of a new order request, customer service calls for complaints or feedback, changes in the company stock prices, text or multimedia messages, emails, social media posts, traffic reports, weather reports or any other kind of data. Simply producing reports using these data on a pre-defined schedule is not enough. Decision makers need real-time alerts and intelligent insight of all that is happening within and around the organization so that they may take meaningful reactive and proactive action before it is too late based on the new information being continuously generated.

A powerful technique called Complex Event Processing (CEP) is used for analyzing events coming from multiple sources over a specific period of time by detecting complex patterns between events and by making correlations. Apart from CEP, Artificial Neural Network (ANN) is also used to model complex relationships between input events data. Both the approaches have their own pros and cons. In this article, we tried to describe a use case in the health care domain with the solution architecture using both CEP and ANN, combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

The following two sections gives brief introduction about CEP and ANN respectively with their key benefits. In section 4, we have explained the approach which combines both the CEP and the ANN efficiently to provide better solution of complex problems. Section 5 and 6 explains the Health Care: Patient Monitoring System use case with the problem description and proposed solution approach using CEP and ANN, followed by the section with summary and conclusion.

Complex Event Processing
Complex event processing is one of the key Operational Intelligence technology used to process one or more stream of data and information (also known as events) and deriving a meaningful conclusion using them. It allows one to set the request for an analysis or some query and then have it continuously executed and evaluated over time against one or many streams of events in a highly efficient manner. CEP is all about processing events that combines data from many sources to infer events or patterns that suggest more complicated circumstances [1].  For example, CEP can be used as Fraud Detection system, to detect suspicious credit card usage by monitoring credit card activity in real time and relating the current transactions with the historical data about a particular customer. The historical data which can be used by CEP Fraud Detection system can be an average transaction amount, minimum and maximum values of the previous transactions, transaction frequencies, locality etc. On detecting fraudulent activity, CEP system can send an alert via an SMS or email to the customer or the credit card service provider to take quick reaction.

The primary goal of CEP is to (1) detect meaningful events or pattern of events which signifies either threats or opportunities from the series of events being received continuously and (2) send alerts for the same to responsible entity to respond as quickly as possible. The following diagram (as figure-1) describes high level view of the CEP system.

Figure 1: High-level view of the CEP system

As shown in Figure 1, the core of the complex event processing system is made up of set of input adapters, set of output adapters and various event processing modules such as event filtering modules, in-memory caching, aggregation over different windows (time-window, sliding window, tumbling window etc.), database lookups module, database writes module, correlation, joins, event pattern matching, state machines, dynamic queries etc. More the number of I/O adapters supported by the CEP, more flexible and adaptable it is and will be able to cover wide range of use cases as compared to the CEP tool having support for limited set of I/O adapters.

Key Benefits of CEP
The following are some of the key benefits the CEP provides to the business.

  • Automatically identifies rare but important relationships between seemingly unrelated events or stream of events and accelerate timely responses to both the threats and opportunities.
  • Using sophisticated analysis and event pattern matching techniques, the CEP improves resource allocation and timely problem resolution by prioritize situations that require the most urgent attention in real or near real time based on arrival of events.
  • CEP helps organization to reduce operating costs by monitoring end-to-end performance of the system and provide timely alerts to rapidly identify potential SLA violations.
  • CEP helps organization to fine tune their business processes by correlating SLA performance with industry metrics e.g. Six Sigma and various Quality metrics, to enhance overall productivity.

Artificial Neural Network
An Artificial Neural Network (ANN) is a computational model which resembles with the way human brain is made up of in structure and the way it works. Similar to human brain which is made up of billions of neurons interconnected by synapses, the ANN can be form as a network of computational nodes connected with each other through links. The ANN needs to be trained repeatedly with specific set of training data before it can be used in production environment. Due to its adaptive nature, the internal structure of the ANN can easily be changed based on external or internal information that flows through the network during the learning phase [2]. The links are assigned weights during training process, which regulate the flow of data from one node to another. ANNs are used to model complex relationships between inputs and outputs data. ANN can efficiently find various patterns in input data or to predict future values of the system parameters. Due to its flexible construct, ANN can be very helpful in modeling complex systems which are very difficult otherwise by using traditional modeling techniques. Artificial neural networks are being applied in diverse of domains and fields. They are extensively used for doing image processing and recognition, speech recognition, credit card fraud detection, for prediction of protein structure in biotechnology and in the field of genetic science.

Artificial neural network consists of two types of interfaces with the external world, the input and the output. Since the ANN is made up of nodes or neurons and the links between them, a subset of total nodes in the ANN act as input nodes, which take data from the external world, a subset of nodes act as output node, which produces result and zero or more hidden nodes act as intermediary nodes, with having only connections with input or output nodes or other hidden nodes.  Hence, the ANN is made up of nodes in input layer, nodes in output layer and zero or more internal layers.

Figure 2: High-level view of artificial neural network

The high level view of ANN is shown in figure-2. The diagram shows a typical neural network with total 12 nodes, three nodes in the input layer, seven nodes in the hidden layer and two nodes in the output layer. Before the neural network can be used in actual production environment, it is needed to be trained for particular environment. The process of training of ANN is called learning of neural network, which is generally done in one of the following three ways:  (a) supervised learning; (b) unsupervised learning and (c) reinforcement learning. The more details about the ANN learning can be found in [2].

Key Benefits of ANN
Since ANNs can infer a function from inputs, they particularly are used in the applications where the complexity of the input data or system modeling makes the design of such a function impractical using traditional approaches. Following are some of the key benefits ANN provides.

  • It is very easy to apply ANN to problem domains where the relationships are quite dynamic or non-linear among the input and output.
  • Since ANN is capable of capturing many kind of relationships and complex patterns among data, ANN allows user to easily model the system which otherwise is very difficult or impossible to represent through traditional modeling approaches.
  • The training information is not stored in any single element but is distributed in the entire network structure. This makes ANN fault tolerant and it reduces the impact of erroneous input on the result.

CEP and ANN Together
Having seen the key properties and benefits of using both, CEP and ANN, this section describes what if one apply both together for specific set of problems to make the modeling of the system and solution easy and efficient. The CEP is best in accepting data or events from multiple channels and apply various event processing operations on it, such as event filtering, event pattern matching, aggregation etc. Apart from that user can configure alerts based on various thresholds on various system parameters. But the CEP tools lakes the ability to predict future events or determine the values of the system parameters for future events, which can be efficiently done by the ANN. So if we combine best of CEP and best of ANN for a particular problem, the resulting solution could be very effective and efficient. In the following sections, we have described how the CEP and the ANN can be used together to solve a particular problem of patient monitoring system in the domain of Health care and medicines.

Patient Monitoring System
The patient monitoring system monitors and keeps track of various body parameters of the patient and provides the data for analysis to monitoring system. Various body parameters could be blood pressure, the percentage of oxygen in the blood, glucose level in the blood, heart beat rate, change in body temperature etc. Data provided by the patient monitoring system helps to make diagnostic decisions easy and more reliable. The quality of patient treatment and care giving can greatly be improved with the use of patient monitoring systems, since it allows generating alerts in case of sudden changes in the patient body parameters which could be dangerous to the patient's health or could be life threatening some time [3].

A Use Case
Goals of the patient monitoring system are to (1) continuously keeps track of the patient's body parameters and store the data for present or future references, (2) identify life-threatening changes in patient's body and raises timely alarms for the same, and (3) to determine whether patient's health is in normal condition or it is improving or worsening based on the continuously arriving input data from various medical monitors. Since no two human bodies react in a same way against given situation or medication, it is very difficult to derived common rule set which can be applied to all human bodies. Similarly, one person's body also reacts differently in different medical and environmental situations. For example, a particular heart beat rate can be normal in some situation, while the same can be very abnormal in the other situation. So to judge the proper health condition, a trained professional is required, i.e. a specialist doctor, who studies all the observations and determine the correct state of patient's health. If the patient monitoring system is equipped with some intelligent agent who will use patient's medical history and current body parameters observations, then quality of patient care delivery can greatly be improved. We combine CEP and ANN together to propose system architecture which tries to act as an intelligent agent of the patient monitoring system, which is described in the following section.

System Architecture of the intelligent patient monitoring system using CEP and ANN
The following diagram, in Figure 3, shows the architecture of the intelligent patient monitoring system using CEP and ANN. There are total five key components; (1) Medical monitors, (2) CEP, (3) Patient's medical history and diagnosis data store, (4) ANN and (5) ANN output to action message converter.

(1) Medical Monitors
Medical monitors are medical devices used for monitoring patient's body parameters. It can consist of one or more body parameter sensors, processing components, display devices as well as communication links for displaying, recording or transmitting data or results elsewhere through a monitoring network. In the proposed architecture, the data generated by medical monitors are fed into the CEP system. [3]

Figure 3: Architecture of the intelligent patient monitoring system using CEP and ANN

The CEP section of the proposed architecture is one of the key components of the system. It receives all the monitored data and applies various event processing techniques, such as filtering, aggregation etc. over input event streams and provides the data for further processing to ANN module. Various input adapters available in CEP make it possible to collect data from different types of sensors or monitors and process them collectively. In CEP module, various event processing rule are written specific to the patient.

(3) Patient's medical history and diagnosis data store
This is the data store where patient's medical history and diagnosis data is stored. It could be traditional RDBMS storage system. The data stored in this storage are used for ANN training purpose. The new data is continuously added into the same data storage and will be used next time when ANN will be trained again with patient's latest medical and diagnosis data.

(4) ANN
The ANN model for the patient is computational neural network specific to the patient and trained using patient's all medical and diagnosis data. This trained ANN model is used for real-time diagnosis and care delivery. The decision is taken based on the input data coming from the CEP output adapters. The patient specific ANN model is trained at regular interval may be daily or on need bases. These regular updates which include latest knowledge about measured body parameters, diagnosis and medication information of the patient, helps ANN model to make accurate predictions. It is also possible to make ANN take biased decision by giving more weight to either historical data or the latest data during training. All these make ANN the most critical component of the system.

(5) ANN output to action message converter
The output generated by the ANN is generally real numbers and they are needed to be mapped to the meaningful information so that appropriate action can be taken. This is done by the ANN output to action message converter. The module not only map ANN output to real world information but it can also sends action data or alerts to devices or human being through email, SMS, alarm system etc. The threshold for various alerts can be configured so it can adapt to the changes happening to the health and body.

Together all these components make a very flexible, intelligent and efficient patient monitoring system. The proposed architecture shows how one can use CEP and ANN together more effectively to model the complex problem and provide efficient solution alternative over the traditional approaches.

Conclusion
Complex event processing and artificial neural network are the two widely used solution techniques for the problems that are very difficult to model using traditional approaches. In this article, we have described both the approaches in brief with their key capabilities. We have also described a use case for intelligent patient monitoring system with the solution architecture using both CEP and ANN and combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

References

  1. Complex event processing, http://en.wikipedia.org/wiki/Complex_event_processing#cite_note-1
  2. Artificial neural network, http://en.wikipedia.org/wiki/Artificial_neural_network
  3. Patient Monitoring Systems - Part 1, http://www.philblock.info/hitkb/p/patient_monitoring_systems.html

More Stories By Kamalkumar Mistry

Kamalkumar Mistry is a Technology Analyst at Infosys Limited, Pune, India. At Infosys, he is part of a research group called Infosys Labs (http://www.infosys.com/infosys-labs).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
The nature of test environments is inherently temporary—you set up an environment, run through an automated test suite, and then tear down the environment. If you can reduce the cycle time for this process down to hours or minutes, then you may be able to cut your test environment budgets considerably. The impact of cloud adoption on test environments is a valuable advancement in both cost savings and agility. The on-demand model takes advantage of public cloud APIs requiring only payment for t...
It has never been a better time to be a developer! Thanks to cloud computing, deploying our applications is much easier than it used to be. How we deploy our apps continues to evolve thanks to cloud hosting, Platform-as-a-Service (PaaS), and now Function-as-a-Service. FaaS is the concept of serverless computing via serverless architectures. Software developers can leverage this to deploy an individual "function", action, or piece of business logic. They are expected to start within milliseconds...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
From manual human effort the world is slowly paving its way to a new space where most process are getting replaced with tools and systems to improve efficiency and bring down operational costs. Automation is the next big thing and low code platforms are fueling it in a significant way. The Automation era is here. We are in the fast pace of replacing manual human efforts with machines and processes. In the world of Information Technology too, we are linking disparate systems, softwares and tool...
DevOps is good for organizations. According to the soon to be released State of DevOps Report high-performing IT organizations are 2X more likely to exceed profitability, market share, and productivity goals. But how do they do it? How do they use DevOps to drive value and differentiate their companies? We recently sat down with Nicole Forsgren, CEO and Chief Scientist at DORA (DevOps Research and Assessment) and lead investigator for the State of DevOps Report, to discuss the role of measure...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
"As we've gone out into the public cloud we've seen that over time we may have lost a few things - we've lost control, we've given up cost to a certain extent, and then security, flexibility," explained Steve Conner, VP of Sales at Cloudistics,in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
These days, APIs have become an integral part of the digital transformation journey for all enterprises. Every digital innovation story is connected to APIs . But have you ever pondered over to know what are the source of these APIs? Let me explain - APIs sources can be varied, internal or external, solving different purposes, but mostly categorized into the following two categories. Data lakes is a term used to represent disconnected but relevant data that are used by various business units wit...
With continuous delivery (CD) almost always in the spotlight, continuous integration (CI) is often left out in the cold. Indeed, it's been in use for so long and so widely, we often take the model for granted. So what is CI and how can you make the most of it? This blog is intended to answer those questions. Before we step into examining CI, we need to look back. Software developers often work in small teams and modularity, and need to integrate their changes with the rest of the project code b...
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Cloud4U builds software services that help people build DevOps platforms for cloud-based software and using our platform people can draw a picture of the system, network, software," explained Kihyeon Kim, CEO and Head of R&D at Cloud4U, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...