Welcome!

SOA & WOA Authors: Carmen Gonzalez, Rex Morrow, Datical, Lori MacVittie, Liz McMillan, Pat Romanski

Related Topics: Virtualization, Java, SOA & WOA, Open Source, Cloud Expo

Virtualization: Article

Considerations for SSD Deployments

SSD is a great technology, but your best value from it will come when you deploy it most efficiently

Legacy storage architectures do not perform very efficiently in virtual computing environments. The very random, very write-intensive I/O patterns generated by virtual hosts drive storage costs up as enterprises either add spindles or look to newer storage technologies like solid state disk (SSD) to address the IOPS shortfall.

SSD costs are coming down, but they are still significantly higher than spinning disk costs. When enterprises do consider SSD, how it is used and where it is placed in the virtual infrastructure can make a big difference in how much enterprises have to spend to meet their performance requirements. It can also impose certain operational limitations that may or may not be issues in specific environments.

Some of the key considerations that need to be taken into account are SSD placement (in the host or in the SAN), high availability/failover requirements, caching vs logging architectures, and the value of preserving existing investments vs rip and replace investments that promise storage hardware specifically designed for virtual environments.

SSD Placement
There are two basic locations to place SSD, each of which offers its own pros and cons. Host-based SSD will generally offer the lowest storage latencies, particularly if the SSD is located on PCIe cards. In non-clustered environments where it is clear that IOPS and storage latencies are the key performance problems, these types of devices can be very valuable. In most cases, they will remove storage as the performance problem.

But don't necessarily expect that in your environment, these devices will deliver their rated IOPS directly to your applications. In removing storage as the bottleneck, system performance will now be determined by whatever the next bottleneck in the system is. That could be CPU, memory, operating system, or any number of other potential issues. This phenomenon is referred to as Amdahl's Law.

What you probably care about are application IOPS. Test the devices you're considering in your environment before purchase, so you know exactly the level of performance gain they will provide to you. Then you can make a more informed decision about whether or not you can cost justify them for use with your workloads. Paying for performance you can't use is like buying a Ferrari for use on America's interstate system - you may never get out of second gear.

Raw SSD technology generally can provide blazingly fast read performance. Write performance, however, varies depending on whether you are writing randomly or sequentially. The raw technical specs on many SSD devices indicate that sequential write performance may be half that of read performance, and random write performance may be half again as slow. Write latencies may also not be deterministic because of how SSD devices manage the space they are writing to. Many SSD vendors are combining software and other infrastructure around their SSD devices to address some of these issues. If you're looking at SSD, look to the software it's packaged with to make sure the SSD capacity you're buying can be used most efficiently.

Host-based SSD introduces failover limitations. If you have implemented a product like VMware HA in your environment to automatically recover failed nodes, any data sitting in a host-based SSD device that has not been written through to shared storage will not be available on recovery. This can lead to data loss on recovery - something that may or may not be an issue in your environment. Even though SSD is non-volatile storage, if the node it is sitting in is down, you can't get to it. You can get to it after that node is recovered, but the issue here is whether or not you can automatically fail over and have access to it.

Because of this issue, most host-based SSD products implement what is called a "write-through" cache, which means that they don't acknowledge writes at SSD latencies, they actually write them through to shared disk and then send the write acknowledgement back from there. Anything on shared disk can be potentially recovered by any other node in the cluster, ensuring that no committed data is unavailable on failover. But what this means is that you won't get any write performance improvements from SSD, just better read performance.

What does your workload look like in terms of read vs write percentages? Most virtual environments are very write intensive, much more so than they ever were in physical environments, and virtual desktop infrastructure (VDI) environments can be as much as 90% writes when operating in steady state mode. If write performance is your problem, host-based SSD with a write-through cache may not help very much in the big picture.

SAN-based SSD, on the other hand, can support failover without data loss, and if implemented with a write-back cache can provide write performance speedups as well. But many implementations available for use with SAN arrays are really only designed to speed up reads. Check carefully as you consider SSD to understand how it is implemented, and how well that maps to the actual performance requirements in your environment.

Caching vs Logging Architectures
Most SSD, wherever it is implemented, is used as a cache. Sizing guidelines for caches start with the cache as a percentage of the back-end storage it is front-ending. Generally the cache needs to be somewhere between 3% to 6% of the back-end storage, so larger data store capacities require larger caches. For example, 20TB of back-end data might require 1TB of SSD cache (5%).

Caches are generally just speeding up reads, but if you are working with a write-back cache, then the cache will have to be split between SSD capacity used to speed up reads and SSD capacity used to speed up writes. Everything else being equal in terms of performance requirements, write-back caches will have to be larger than write-through caches, but will provide more balanced performance gains (across both reads and writes).

Logging architectures, by definition, speed up writes, making them a good fit for write-intensive workloads like those found in virtual computing environments. Logs provide write performance gains by taking the very random workload and essentially removing the randomness from it by writing it sequentially to a log, acknowledging the writes from there, then asynchronously de-staging them to a shared storage pool. This means that the same SSD device used in a log vs used in a cache will be faster, assuming some randomness to the workload. The write performance the guest VMs see is the performance of the log device operating in sequential write mode almost all the time, and it can result in write performance improvements of up to 10x (relative to that same device operating in the random mode it would normally be operating in). And a log provides write performance improvements for all writes from all VMs all the time. (What's also interesting is that if you are getting 10x the IOPS from your current spinning disk, given Amdahl's Law, you may not even need to purchase SSD to remove storage as the performance bottleneck.)

Logs are very small (10GB or so) and are dedicated to a host, while the shared storage pool is accessible to all nodes in a cluster and primarily handles read requests. In a 20 node cluster with 20TB of shared data, you would need 200GB for the logs (10GB x 20 hosts) vs the 1TB you would need if SSD was used as a cache. Logs are much more efficient than caches for write performance improvements, resulting in lower costs.

If logs are located on SAN-based SSD, you not only get the write performance improvements, but this design fully supports node failover without data loss, a very nice differentiator from write-through cache implementations.

But what about read performance? This is where caches excel, and a write log doesn't seem to address that. That's true, and why it's important to combine a logging architecture with storage tiering. Any SSD capacity not used by the logs can be configured into a fast tier 0, which will provide the read performance improvements for any data residing in that tier. The bottom line here is that you can get better overall storage performance improvements from a "log + tiering" design than you can from a cache design while using 50% - 90% less high performance device (in this case, SSD) capacity. In our example above, if you buy a 256GB SAN-based SSD device and use it in a 20 node cluster, you'll get SSD sequential write performance for every write all the time, and have 56GB left over to put into a tier 0. Compare that to buying 1TB+ of cache capacity at SSD prices.

With single image management technology like linked clones or other similar implementations, you can lock your VM templates into this tier, and very efficiently gain read performance improvements against the shared blocks in those templates for all child VMs all the time. Single image management technology can help make the use of SSD capacity more efficient in either a cache or a log architecture, so don't overlook it as long as it is implemented in a way that does not impinge upon your storage performance.

Purpose-Built Storage Hardware
There are some interesting new array designs that leverage SSD, sometimes in combination with some of the other technologies mentioned above (log architectures, storage tiering, single image manage-ment, spinning disk). Designed specifically with the storage performance issues in virtual environments in mind, there is no doubt that these arrays can outperform legacy arrays. But for most enterprises, that may not be the operative question.

It's rare that an enterprise doesn't already have a sizable investment in storage. Many of these existing arrays support SSD, which can be deployed in a SAN-based cache or fast tier. It's much easier, and potentially much less disruptive and expensive if existing storage investments could be leveraged to address the storage performance issues in virtual environments. It's also less risky, since most of the hot new "virtual computing-aware" arrays and appliances are built by startups, not proven vendors. If there are pure software-based options to consider that support heterogeneous storage hardware and can address the storage issues common in virtual computing environments, allowing you to potentially take advantage of SSD capacity that fits into your current arrays, this could be a simpler, more cost-effective, and less risky option than buying from a storage startup. But only, of course, if it adequately resolves your performance problem.

The Take-Away
If there's one point you should take away from this article, it's that just blindly throwing SSD at a storage performance problem in virtual computing environments is not going to be a very efficient or cost-effective way to address your particular issues. Consider how much more performance you need, whether you need it on reads, writes, or both, whether you need to failover without data loss, and whether preserving existing storage hardware investments is important to you. SSD is a great technology, but your best value from it will come when you deploy it most efficiently.

More Stories By Eric Burgener

Eric Burgener is vice president product management at Virsto Software. He has worked on emerging technologies for almost his entire career, with early stints at pioneering companies such as Tandem, Pyramid, Sun, Veritas, ConvergeNet, Mendocino, and Topio, among others, on fault tolerance and high availability, replication, backup, continuous data protection, and server virtualization technologies.

Over the last 25 years Eric has worked across a variety of functional areas, including sales, product management, marketing, business development, and technical support, and also spent time as an Executive in Residence with Mayfield and a storage industry analyst at Taneja Group. Before joining Virsto, he was VP of Marketing at InMage.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at Internet of @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, will discuss how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue business and deliver exceptional experiences to their customers.
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.