Welcome!

Microservices Expo Authors: XebiaLabs Blog, Elizabeth White, Jnan Dash, Pat Romanski, Liz McMillan

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Microsoft Cloud, Containers Expo Blog, Apache

@CloudExpo: Blog Feed Post

Little Data, Big Data and Very Big Data (VBD) or Big BS?

I routinely hear from different people or groups trying to define what is or is not big data

This is an industry trends and perspective piece about big data and little data, industry adoption and customer deployment.

If you are in any way associated with information technology (IT), business, scientific, media and entertainment computing or related areas, you may have heard big data mentioned. Big data has been a popular buzzword bingo topic and term for a couple of years now. Big data is being used to describe new and emerging along with existing types of applications and information processing tools and techniques.

I routinely hear from different people or groups trying to define what is or is not big data and all too often those are based on a particular product, technology, service or application focus. Thus it should be no surprise that those trying to police what is or is not big data will often do so based on what their interest, sphere of influence, knowledge or experience and jobs depend on.

Traveling and big data images

Not long ago while out traveling I ran into a person who told me that big data is new data that did not exist just a few years ago. Turns out this person was involved in geology so I was surprised that somebody in that field was not aware of or working with geophysical, mapping, seismic and other legacy or traditional big data. Turns out this person was basing his statements on what he knew, heard, was told about or on sphere of influence around a particular technology, tool or approach.

Fwiw, if you have not figured out already, like cloud, virtualization and other technology enabling tools and techniques, I tend to take a pragmatic approach vs. becoming latched on to a particular bandwagon (for or against) per say.

Not surprisingly there is confusion and debate about what is or is not big data including if it only applies to new vs. existing and old data. As with any new technology, technique or buzzword bingo topic theme, various parties will try to place what is or is not under the definition to align with their needs, goals and preferences. This is the case with big data where you can routinely find proponents of Hadoop and Map reduce position big data as aligning with the capabilities and usage scenarios of those related technologies for business and other forms of analytics.

SAS software for big data

Not surprisingly the granddaddy of all business analytics, data science and statistic analysis number crunching is the Statistical Analysis Software (SAS) from the SAS Institute. If these types of technology solutions and their peers define what is big data then SAS (not to be confused with Serial Attached SCSI which can be found on the back-end of big data storage solutions) can be considered first generation big data analytics or Big Data 1.0 (BD1 ;) ). That means Hadoop Map Reduce is Big Data 2.0 (BD2 ;) ;) ) if you like, or dislike for that matter.

Funny thing about some fans and proponents or surrogates of BD2 is that they may have heard of BD1 like SAS with a limited understanding of what it is or how it is or can be used. When I worked in IT as a performance and capacity planning analyst focused on servers, storage, network hardware, software and applications I used SAS to crunch various data streams of event, activity and other data from diverse sources. This involved correlating data, running various analytic algorithms on the data to determine response times, availability, usage and other things in support of modeling, forecasting, tuning and trouble shooting. Hmm, sound like first generation big data analytics or Data Center Infrastructure Management (DCIM) and IT Service Management (ITSM) to anybody?

Now to be fair, comparing SAS, SPSS or any number of other BD1 generation tools to Hadoop and Map Reduce or BD2 second generation tools is like comparing apples to oranges, or apples to pears. Lets move on as there is much more to what is big data than simply focus around SAS or Hadoop.

StorageIO industry trends cloud, virtualization and big data

Another type of big data are the information generated, processed, stored and used by applications that result in large files, data sets or objects. Large file, objects or data sets include low resolution and high-definition photos, videos, audio, security and surveillance, geophysical mapping and seismic exploration among others. Then there are data warehouses where transactional data from databases gets moved to for analysis in systems such as those from Oracle, Teradata, Vertica or FX among others. Some of those other tools even play (or work) in both traditional e.g. BD1 and new or emerging BD2 worlds.

This is where some interesting discussions, debates or disagreements can occur between those who latch onto or want to keep big data associated with being something new and usually focused around their preferred tool or technology. What results from these types of debates or disagreements is a missed opportunity for organizations to realize that they might already be doing or using a form of big data and thus have a familiarity and comfort zone with it.

By having a familiarity or comfort zone vs. seeing big data as something new, different, hype or full of FUD (or BS), an organization can be comfortable with the term big data. Often after taking a step back and looking at big data beyond the hype or fud, the reaction is along the lines of, oh yeah, now we get it, sure, we are already doing something like that so lets take a look at some of the new tools and techniques to see how we can extend what we are doing.

Likewise many organizations are doing big bandwidth already and may not realize it thinking that is only what media and entertainment, government, technical or scientific computing, high performance computing or high productivity computing (HPC) does. I'm assuming that some of the big data and big bandwidth pundits will disagree, however if in your environment you are doing many large backups, archives, content distribution, or copying large amounts of data for different purposes that consume big bandwidth and need big bandwidth solutions.

Yes I know, that's apples to oranges and perhaps stretching the limits of what is or can be called big bandwidth based on somebody's definition, taxonomy or preference. Hopefully you get the point that there is diversity across various environments as well as types of data and applications, technologies, tools and techniques.

StorageIO industry trends cloud, virtualization and big data

What about little data then?

I often say that if big data is getting all the marketing dollars to generate industry adoption, then little data is generating all the revenue (and profit or margin) dollars by customer deployment. While tools and technologies related to Hadoop (or Haydoop if you are from HDS) are getting industry adoption attention (e.g. marketing dollars being spent) revenues from customer deployment are growing.

Where big data revenues are strongest for most vendors today are centered around solutions for hosting, storing, managing and protecting big files, big objects. These include scale out NAS solutions for large unstructured data like those from Amplidata, Cray, Dell, Data Direct Networks (DDN), EMC (e.g. Isilon), HP X9000 (IBRIX), IBM SONAS, NetApp, Oracle and Xyratex among others. Then there flexible converged compute storage platforms optimized for analytics and running different software tools such as those from EMC (Greenplum), IBM (Netezza), NetApp (via partnerships) or Oracle among others that can be used for different purposes in addition to supporting Hadoop and Map reduce.

If little data is databases and things not generally lumped into the big data bucket, and if you think or perceive big data only to be Hadoop map reduce based data, then does that mean all the large unstructured non little data is then very big data or VBD?

StorageIO industry trends cloud, virtualization and big data

Of course the virtualization folks might want to if they have not already corner the V for Virtual Big Data. In that case, then instead of Very Big Data, how about very very Big Data (vvBD). How about Ultra-Large Big Data (ULBD), or High-Revenue Big Data (HRBD), granted the HR might cause some to think its unique for Health Records, or Human Resources, both btw leverage different forms of big data regardless of what you see or think big data is.

Does that then mean we should really be calling videos, audio, PACs, seismic, security surveillance video and related data to be VBD? Would this further confuse the market, or the industry or help elevate it to a grander status in terms of size (data file or object capacity, bandwidth, market size and application usage, market revenue and so forth)?

Do we need various industry consortiums, lobbyists or trade groups to go off and create models, taxonomies, standards and dictionaries based on their constituents needs and would they align with those of the customers, after all, there are big dollars flowing around big data industry adoption (marketing).

StorageIO industry trends cloud, virtualization and big data

What does this all mean?

Is Big Data BS?

First let me be clear, big data is not BS, however there is a lot of BS marketing BS by some along with hype and fud adding to the confusion and chaos, perhaps even missed opportunities. Keep in mind that in chaos and confusion there can be opportunity for some.

IMHO big data is real.

There are different variations, use cases and types of products, technologies and services that fall under the big data umbrella. That does not mean everything can or should fall under the big data umbrella as there is also little data.

What this all means is that there are different types of applications for various industries that have big and little data, virtual and very big data from videos, photos, images, audio, documents and more.

Big data is a big buzzword bingo term these days with vendor marketing big dollars being applied so no surprise the buzz, hype, fud and more.

Ok, nuff said, for now...

Cheers Gs

Greg Schulz - Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO All Rights Reserved

Read the original blog entry...

More Stories By Greg Schulz

Greg Schulz is founder of the Server and StorageIO (StorageIO) Group, an IT industry analyst and consultancy firm. Greg has worked with various server operating systems along with storage and networking software tools, hardware and services. Greg has worked as a programmer, systems administrator, disaster recovery consultant, and storage and capacity planner for various IT organizations. He has worked for various vendors before joining an industry analyst firm and later forming StorageIO.

In addition to his analyst and consulting research duties, Schulz has published over a thousand articles, tips, reports and white papers and is a sought after popular speaker at events around the world. Greg is also author of the books Resilient Storage Network (Elsevier) and The Green and Virtual Data Center (CRC). His blog is at www.storageioblog.com and he can also be found on twitter @storageio.

@MicroservicesExpo Stories
If you are part of the cloud development community, you certainly know about “serverless computing”, almost a misnomer. Because it implies there are no servers which is untrue. However the servers are hidden from the developers. This model eliminates operational complexity and increases developer productivity. We came from monolithic computing to client-server to services to microservices to serverless model. In other words, our systems have slowly “dissolved” from monolithic to function-by-func...
While some vendors scramble to create and sell you a fancy solution for monitoring your spanking new Amazon Lambdas, hear how you can do it on the cheap using just built-in Java APIs yourself. By exploiting a little-known fact that Lambdas aren’t exactly single-threaded, you can effectively identify hot spots in your serverless code. In his session at @DevOpsSummit at 21st Cloud Expo, Dave Martin, Product owner at CA Technologies, will give a live demonstration and code walkthrough, showing how ...
In his session at 20th Cloud Expo, Scott Davis, CTO of Embotics, discussed how automation can provide the dynamic management required to cost-effectively deliver microservices and container solutions at scale. He also discussed how flexible automation is the key to effectively bridging and seamlessly coordinating both IT and developer needs for component orchestration across disparate clouds – an increasingly important requirement at today’s multi-cloud enterprise.
Many organizations are now looking to DevOps maturity models to gauge their DevOps adoption and compare their maturity to their peers. However, as enterprise organizations rush to adopt DevOps, moving past experimentation to embrace it at scale, they are in danger of falling into the trap that they have fallen into time and time again. Unfortunately, we've seen this movie before, and we know how it ends: badly.
IT organizations are moving to the cloud in hopes to approve efficiency, increase agility and save money. Migrating workloads might seem like a simple task, but what many businesses don’t realize is that application migration criteria differs across organizations, making it difficult for architects to arrive at an accurate TCO number. In his session at 21st Cloud Expo, Joe Kinsella, CTO of CloudHealth Technologies, will offer a systematic approach to understanding the TCO of a cloud application...
API Security has finally entered our security zeitgeist. OWASP Top 10 2017 - RC1 recognized API Security as a first class citizen by adding it as number 10, or A-10 on its list of web application vulnerabilities. We believe this is just the start. The attack surface area offered by API is orders or magnitude larger than any other attack surface area. Consider the fact the APIs expose cloud services, internal databases, application and even legacy mainframes over the internet. What could go wrong...
With Cloud Foundry you can easily deploy and use apps utilizing websocket technology, but not everybody realizes that scaling them out is not that trivial. In his session at 21st Cloud Expo, Roman Swoszowski, CTO and VP, Cloud Foundry Services, at Grape Up, will show you an example of how to deal with this issue. He will demonstrate a cloud-native Spring Boot app running in Cloud Foundry and communicating with clients over websocket protocol that can be easily scaled horizontally and coordinate...
In his session at 20th Cloud Expo, Chris Carter, CEO of Approyo, discussed the basic set up and solution for an SAP solution in the cloud and what it means to the viability of your company. Chris Carter is CEO of Approyo. He works with business around the globe, to assist them in their journey to the usage of Big Data in the forms of Hadoop (Cloudera and Hortonwork's) and SAP HANA. At Approyo, we support firms who are looking for knowledge to grow through current business process, where even 1%...
The goal of Continuous Testing is to shift testing left to find defects earlier and release software faster. This can be achieved by integrating a set of open source functional and performance testing tools in the early stages of your software delivery lifecycle. There is one process that binds all application delivery stages together into one well-orchestrated machine: Continuous Testing. Continuous Testing is the conveyer belt between the Software Factory and production stages. Artifacts are m...
From manual human effort the world is slowly paving its way to a new space where most process are getting replaced with tools and systems to improve efficiency and bring down operational costs. Automation is the next big thing and low code platforms are fueling it in a significant way. The Automation era is here. We are in the fast pace of replacing manual human efforts with machines and processes. In the world of Information Technology too, we are linking disparate systems, softwares and tool...
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
Web services have taken the development world by storm, especially in recent years as they've become more and more widely adopted. There are naturally many reasons for this, but first, let's understand what exactly a web service is. The World Wide Web Consortium (W3C) defines "web of services" as "message-based design frequently found on the Web and in enterprise software". Basically, a web service is a method of sending a message between two devices through a network. In practical terms, this ...
In his session at @DevOpsSummit at 20th Cloud Expo, Kelly Looney, director of DevOps consulting for Skytap, showed how an incremental approach to introducing containers into complex, distributed applications results in modernization with less risk and more reward. He also shared the story of how Skytap used Docker to get out of the business of managing infrastructure, and into the business of delivering innovation and business value. Attendees learned how up-front planning allows for a clean sep...
SYS-CON Events announced today that Calligo has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Calligo is an innovative cloud service provider offering mid-sized companies the highest levels of data privacy. Calligo offers unparalleled application performance guarantees, commercial flexibility and a personalized support service from its globally located cloud platform...
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
We have already established the importance of APIs in today’s digital world (read about it here). With APIs playing such an important role in keeping us connected, it’s necessary to maintain the API’s performance as well as availability. There are multiple aspects to consider when monitoring APIs, from integration to performance issues, therefore a general monitoring strategy that only accounts for up-time is not ideal.
In IT, we sometimes coin terms for things before we know exactly what they are and how they’ll be used. The resulting terms may capture a common set of aspirations and goals – as “cloud” did broadly for on-demand, self-service, and flexible computing. But such a term can also lump together diverse and even competing practices, technologies, and priorities to the point where important distinctions are glossed over and lost.
Enterprise architects are increasingly adopting multi-cloud strategies as they seek to utilize existing data center assets, leverage the advantages of cloud computing and avoid cloud vendor lock-in. This requires a globally aware traffic management strategy that can monitor infrastructure health across data centers and end-user experience globally, while responding to control changes and system specification at the speed of today’s DevOps teams. In his session at 20th Cloud Expo, Josh Gray, Chie...
As today's digital disruptions bounce and smash their way through conventional technologies and conventional wisdom alike, predicting their path is a multifaceted challenge. So many areas of technology advance on Moore's Law-like exponential curves that divining the future is fraught with danger. Such is the problem with artificial intelligence (AI), and its related concepts, including cognitive computing, machine learning, and deep learning.
In his session at 20th Cloud Expo, Mike Johnston, an infrastructure engineer at Supergiant.io, discussed how to use Kubernetes to set up a SaaS infrastructure for your business. Mike Johnston is an infrastructure engineer at Supergiant.io with over 12 years of experience designing, deploying, and maintaining server and workstation infrastructure at all scales. He has experience with brick and mortar data centers as well as cloud providers like Digital Ocean, Amazon Web Services, and Rackspace. H...