Welcome!

Microservices Expo Authors: Pat Romanski, XebiaLabs Blog, Liz McMillan, Derek Weeks, Elizabeth White

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Microsoft Cloud, Containers Expo Blog, Apache

@CloudExpo: Blog Feed Post

Little Data, Big Data and Very Big Data (VBD) or Big BS?

I routinely hear from different people or groups trying to define what is or is not big data

This is an industry trends and perspective piece about big data and little data, industry adoption and customer deployment.

If you are in any way associated with information technology (IT), business, scientific, media and entertainment computing or related areas, you may have heard big data mentioned. Big data has been a popular buzzword bingo topic and term for a couple of years now. Big data is being used to describe new and emerging along with existing types of applications and information processing tools and techniques.

I routinely hear from different people or groups trying to define what is or is not big data and all too often those are based on a particular product, technology, service or application focus. Thus it should be no surprise that those trying to police what is or is not big data will often do so based on what their interest, sphere of influence, knowledge or experience and jobs depend on.

Traveling and big data images

Not long ago while out traveling I ran into a person who told me that big data is new data that did not exist just a few years ago. Turns out this person was involved in geology so I was surprised that somebody in that field was not aware of or working with geophysical, mapping, seismic and other legacy or traditional big data. Turns out this person was basing his statements on what he knew, heard, was told about or on sphere of influence around a particular technology, tool or approach.

Fwiw, if you have not figured out already, like cloud, virtualization and other technology enabling tools and techniques, I tend to take a pragmatic approach vs. becoming latched on to a particular bandwagon (for or against) per say.

Not surprisingly there is confusion and debate about what is or is not big data including if it only applies to new vs. existing and old data. As with any new technology, technique or buzzword bingo topic theme, various parties will try to place what is or is not under the definition to align with their needs, goals and preferences. This is the case with big data where you can routinely find proponents of Hadoop and Map reduce position big data as aligning with the capabilities and usage scenarios of those related technologies for business and other forms of analytics.

SAS software for big data

Not surprisingly the granddaddy of all business analytics, data science and statistic analysis number crunching is the Statistical Analysis Software (SAS) from the SAS Institute. If these types of technology solutions and their peers define what is big data then SAS (not to be confused with Serial Attached SCSI which can be found on the back-end of big data storage solutions) can be considered first generation big data analytics or Big Data 1.0 (BD1 ;) ). That means Hadoop Map Reduce is Big Data 2.0 (BD2 ;) ;) ) if you like, or dislike for that matter.

Funny thing about some fans and proponents or surrogates of BD2 is that they may have heard of BD1 like SAS with a limited understanding of what it is or how it is or can be used. When I worked in IT as a performance and capacity planning analyst focused on servers, storage, network hardware, software and applications I used SAS to crunch various data streams of event, activity and other data from diverse sources. This involved correlating data, running various analytic algorithms on the data to determine response times, availability, usage and other things in support of modeling, forecasting, tuning and trouble shooting. Hmm, sound like first generation big data analytics or Data Center Infrastructure Management (DCIM) and IT Service Management (ITSM) to anybody?

Now to be fair, comparing SAS, SPSS or any number of other BD1 generation tools to Hadoop and Map Reduce or BD2 second generation tools is like comparing apples to oranges, or apples to pears. Lets move on as there is much more to what is big data than simply focus around SAS or Hadoop.

StorageIO industry trends cloud, virtualization and big data

Another type of big data are the information generated, processed, stored and used by applications that result in large files, data sets or objects. Large file, objects or data sets include low resolution and high-definition photos, videos, audio, security and surveillance, geophysical mapping and seismic exploration among others. Then there are data warehouses where transactional data from databases gets moved to for analysis in systems such as those from Oracle, Teradata, Vertica or FX among others. Some of those other tools even play (or work) in both traditional e.g. BD1 and new or emerging BD2 worlds.

This is where some interesting discussions, debates or disagreements can occur between those who latch onto or want to keep big data associated with being something new and usually focused around their preferred tool or technology. What results from these types of debates or disagreements is a missed opportunity for organizations to realize that they might already be doing or using a form of big data and thus have a familiarity and comfort zone with it.

By having a familiarity or comfort zone vs. seeing big data as something new, different, hype or full of FUD (or BS), an organization can be comfortable with the term big data. Often after taking a step back and looking at big data beyond the hype or fud, the reaction is along the lines of, oh yeah, now we get it, sure, we are already doing something like that so lets take a look at some of the new tools and techniques to see how we can extend what we are doing.

Likewise many organizations are doing big bandwidth already and may not realize it thinking that is only what media and entertainment, government, technical or scientific computing, high performance computing or high productivity computing (HPC) does. I'm assuming that some of the big data and big bandwidth pundits will disagree, however if in your environment you are doing many large backups, archives, content distribution, or copying large amounts of data for different purposes that consume big bandwidth and need big bandwidth solutions.

Yes I know, that's apples to oranges and perhaps stretching the limits of what is or can be called big bandwidth based on somebody's definition, taxonomy or preference. Hopefully you get the point that there is diversity across various environments as well as types of data and applications, technologies, tools and techniques.

StorageIO industry trends cloud, virtualization and big data

What about little data then?

I often say that if big data is getting all the marketing dollars to generate industry adoption, then little data is generating all the revenue (and profit or margin) dollars by customer deployment. While tools and technologies related to Hadoop (or Haydoop if you are from HDS) are getting industry adoption attention (e.g. marketing dollars being spent) revenues from customer deployment are growing.

Where big data revenues are strongest for most vendors today are centered around solutions for hosting, storing, managing and protecting big files, big objects. These include scale out NAS solutions for large unstructured data like those from Amplidata, Cray, Dell, Data Direct Networks (DDN), EMC (e.g. Isilon), HP X9000 (IBRIX), IBM SONAS, NetApp, Oracle and Xyratex among others. Then there flexible converged compute storage platforms optimized for analytics and running different software tools such as those from EMC (Greenplum), IBM (Netezza), NetApp (via partnerships) or Oracle among others that can be used for different purposes in addition to supporting Hadoop and Map reduce.

If little data is databases and things not generally lumped into the big data bucket, and if you think or perceive big data only to be Hadoop map reduce based data, then does that mean all the large unstructured non little data is then very big data or VBD?

StorageIO industry trends cloud, virtualization and big data

Of course the virtualization folks might want to if they have not already corner the V for Virtual Big Data. In that case, then instead of Very Big Data, how about very very Big Data (vvBD). How about Ultra-Large Big Data (ULBD), or High-Revenue Big Data (HRBD), granted the HR might cause some to think its unique for Health Records, or Human Resources, both btw leverage different forms of big data regardless of what you see or think big data is.

Does that then mean we should really be calling videos, audio, PACs, seismic, security surveillance video and related data to be VBD? Would this further confuse the market, or the industry or help elevate it to a grander status in terms of size (data file or object capacity, bandwidth, market size and application usage, market revenue and so forth)?

Do we need various industry consortiums, lobbyists or trade groups to go off and create models, taxonomies, standards and dictionaries based on their constituents needs and would they align with those of the customers, after all, there are big dollars flowing around big data industry adoption (marketing).

StorageIO industry trends cloud, virtualization and big data

What does this all mean?

Is Big Data BS?

First let me be clear, big data is not BS, however there is a lot of BS marketing BS by some along with hype and fud adding to the confusion and chaos, perhaps even missed opportunities. Keep in mind that in chaos and confusion there can be opportunity for some.

IMHO big data is real.

There are different variations, use cases and types of products, technologies and services that fall under the big data umbrella. That does not mean everything can or should fall under the big data umbrella as there is also little data.

What this all means is that there are different types of applications for various industries that have big and little data, virtual and very big data from videos, photos, images, audio, documents and more.

Big data is a big buzzword bingo term these days with vendor marketing big dollars being applied so no surprise the buzz, hype, fud and more.

Ok, nuff said, for now...

Cheers Gs

Greg Schulz - Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO All Rights Reserved

Read the original blog entry...

More Stories By Greg Schulz

Greg Schulz is founder of the Server and StorageIO (StorageIO) Group, an IT industry analyst and consultancy firm. Greg has worked with various server operating systems along with storage and networking software tools, hardware and services. Greg has worked as a programmer, systems administrator, disaster recovery consultant, and storage and capacity planner for various IT organizations. He has worked for various vendors before joining an industry analyst firm and later forming StorageIO.

In addition to his analyst and consulting research duties, Schulz has published over a thousand articles, tips, reports and white papers and is a sought after popular speaker at events around the world. Greg is also author of the books Resilient Storage Network (Elsevier) and The Green and Virtual Data Center (CRC). His blog is at www.storageioblog.com and he can also be found on twitter @storageio.

@MicroservicesExpo Stories
While DevOps promises a better and tighter integration among an organization’s development and operation teams and transforms an application life cycle into a continual deployment, Chef and Azure together provides a speedy, cost-effective and highly scalable vehicle for realizing the business values of this transformation. In his session at @DevOpsSummit at 19th Cloud Expo, Yung Chou, a Technology Evangelist at Microsoft, will present a unique opportunity to witness how Chef and Azure work tog...
When scaling agile / Scrum, we invariable run into the alignment vs autonomy problem. In short: you cannot have autonomous self directing teams if they have no clue in what direction they should go, or even shorter: Alignment breeds autonomy. But how do we create alignment? and what tools can we use to quickly evaluate if what we want to do is part of the mission or better left out? Niel Nickolaisen created the Purpose Alignment model and I use it with innovation labs in large enterprises to de...
SYS-CON Events announced today that Numerex Corp, a leading provider of managed enterprise solutions enabling the Internet of Things (IoT), will exhibit at the 19th International Cloud Expo | @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Numerex Corp. (NASDAQ:NMRX) is a leading provider of managed enterprise solutions enabling the Internet of Things (IoT). The Company's solutions produce new revenue streams or create operating...
Analysis of 25,000 applications reveals 6.8% of packages/components used included known defects. Organizations standardizing on components between 2 - 3 years of age can decrease defect rates substantially. Open source and third-party packages/components live at the heart of high velocity software development organizations. Today, an average of 106 packages/components comprise 80 - 90% of a modern application, yet few organizations have visibility into what components are used where.
DevOps at Cloud Expo – being held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Am...
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management solutions, helping companies worldwide activate their data to drive more value and business insight and to transform moder...
Throughout history, various leaders have risen up and tried to unify the world by conquest. Fortunately, none of their plans have succeeded. The world goes on just fine with each country ruling itself; no single ruler is necessary. That’s how it is with the container platform ecosystem, as well. There’s no need for one all-powerful, all-encompassing container platform. Think about any other technology sector out there – there are always multiple solutions in every space. The same goes for conta...
Let's recap what we learned from the previous chapters in the series: episode 1 and episode 2. We learned that a good rollback mechanism cannot be designed without having an intimate knowledge of the application architecture, the nature of your components and their dependencies. Now that we know what we have to restore and in which order, the question is how?
About a year ago we tuned into “the need for speed” and how a concept like "serverless computing” was increasingly catering to this. We are now a year further and the term “serverless” is taking on unexpected proportions. With some even seeing it as the successor to cloud in general or at least as a successor to the clouds’ poorer cousin in terms of revenue, hype and adoption: PaaS. The question we need to ask is whether this constitutes an example of Hype Hopping: to effortlessly pivot to the ...
Enterprise IT has been in the era of Hybrid Cloud for some time now. But it seems most conversations about Hybrid are focused on integrating AWS, Microsoft Azure, or Google ECM into existing on-premises systems. Where is all the Private Cloud? What do technology providers need to do to make their offerings more compelling? How should enterprise IT executives and buyers define their focus, needs, and roadmap, and communicate that clearly to the providers?
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will look at the protocols that communicate data and the emerging data analy...
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of So...
Video experiences should be unique and exciting! But that doesn’t mean you need to patch all the pieces yourself. Users demand rich and engaging experiences and new ways to connect with you. But creating robust video applications at scale can be complicated, time-consuming and expensive. In his session at @ThingsExpo, Zohar Babin, Vice President of Platform, Ecosystem and Community at Kaltura, will discuss how VPaaS enables you to move fast, creating scalable video experiences that reach your...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
With the rise of Docker, Kubernetes, and other container technologies, the growth of microservices has skyrocketed among dev teams looking to innovate on a faster release cycle. This has enabled teams to finally realize their DevOps goals to ship and iterate quickly in a continuous delivery model. Why containers are growing in popularity is no surprise — they’re extremely easy to spin up or down, but come with an unforeseen issue. However, without the right foresight, DevOps and IT teams may lo...
As applications are promoted from the development environment to the CI or the QA environment and then into the production environment, it is very common for the configuration settings to be changed as the code is promoted. For example, the settings for the database connection pools are typically lower in development environment than the QA/Load Testing environment. The primary reason for the existence of the configuration setting differences is to enhance application performance. However, occas...