Microservices Expo Authors: Ruxit Blog, Elizabeth White, Derek Weeks, Dana Gardner, TJ Randall

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Apache, Cloud Security

@CloudExpo: Article

Arrival of Big Data Opens Up a New Range of Analytics

It's happening: Hadoop and SQL worlds are converging

With Strata, IBM IOD, and Teradata Partners conferences all occurring this week, it’s not surprising that this is a big week for Hadoop-related announcements. The common thread of announcements is essentially, “We know that Hadoop is not known for performance, but we’re getting better at it, and we’re going to make it look more like SQL.” In essence, Hadoop and SQL worlds are converging, and you’re going to be able to perform interactive BI analytics on it.

The opportunity and challenge of Big Data from new platforms such as Hadoop is that it opens a new range of analytics. On one hand, Big Data analytics have updated and revived programmatic access to data, which happened to be the norm prior to the advent of SQL. There are plenty of scenarios where taking programmatic approaches are far more efficient, such as dealing with time series data or graph analysis to map many-to-many relationships.

It also leverages in-memory data grids such as Oracle Coherence, IBM WebSphere eXtreme Scale, GigaSpaces and others, and, where programmatic development (usually in Java) proved more efficient for accessing highly changeable data for web applications where traditional paths to the database would have been I/O-constrained. Conversely Advanced SQL platforms such as Greenplum and Teradata Aster have provided support for MapReduce-like programming because, even with structured data, sometimes using a Java programmatic framework is a more efficient way to rapidly slice through volumes of data.

But when you talk analytics, you can’t simply write off the legions of SQL developers that populate enterprise IT shops.

Until now, Hadoop has not until now been for the SQL-minded. The initial path was, find someone to do data exploration inside Hadoop, but once you’re ready to do repeatable analysis, ETL (or ELT) it into a SQL data warehouse. That’s been the pattern with Oracle Big Data Appliance (use Oracle loader and data integration tools), and most Advanced SQL platforms; most data integration tools provide Hadoop connectors that spawn their own MapReduce programs to ferry data out of Hadoop. Some integration tool providers, like Informatica, offer tools to automate parsing of Hadoop data. Teradata Aster and Hortonworks have been talking up the potentials of HCatalog, in actuality an enhanced version of Hive with RESTful interfaces, cost optimizers, and so on, to provide a more SQL friendly view of data residing inside Hadoop.

But when you talk analytics, you can’t simply write off the legions of SQL developers that populate enterprise IT shops. And beneath the veneer of chaos, there is an implicit order to most so-called “unstructured” data that is within the reach programmatic transformation approaches that in the long run could likely be automated or packaged inside a tool.

At Ovum, we have long believed that for Big Data to crossover to the mainstream enterprise, that it must become a first-class citizen with IT and the data center. The early pattern of skunk works projects, led by elite, highly specialized teams of software engineers from Internet firms to solve Internet-style problems (e.g., ad placement, search optimization, customer online experience, etc.) are not the problems of mainstream enterprises. And neither is the model of recruiting high-priced talent to work exclusively on Hadoop sustainable for most organizations; such staffing models are not sustainable for mainstream enterprises. It means that Big Data must be consumable by the mainstream of SQL developers.

Making Hadoop more SQL-like is hardly new

Hive and Pig became Apache Hadoop projects because of the need for SQL-like metadata management and data transformation languages, respectively; HBase emerged because of the need for a table store to provide a more interactive face – although as a very sparse, rudimentary column store, does not provide the efficiency of an optimized SQL database (or the extreme performance of some columnar variants). Sqoop in turn provides a way to pipeline SQL data into Hadoop, a use case that will grow more common as organizations look to Hadoop to provide scalable and cheaper storage than commercial SQL. While these Hadoop subprojects that did not exactly make Hadoop look like SQL, they provided building blocks from which many of this week’s announcements leverage.

Progress marches on

One train of thought is that if Hadoop can look more like a SQL database, more operations could be performed inside Hadoop. That’s the theme behind Informatica’s long-awaited enhancement of its PowerCenter transformation tool to work natively inside Hadoop. Until now, PowerCenter could extract data from Hadoop, but the extracts would have to be moved to a staging server where the transformation would be performed for loading to the familiar SQL data warehouse target. The new offering, PowerCenter Big Data Edition, now supports an ELT pattern that uses the power of MapReduce processes inside Hadoop to perform transformations. The significance is that PowerCenter users now have a choice: load the transformed data to HBase, or continue loading to SQL.

There is growing support for packaging Hadoop inside a common hardware appliance with Advanced SQL. EMC Greenplum was the first out of gate with DCA (Data Computing Appliance) that bundles its own distribution of Apache Hadoop (not to be confused with Greenplum MR, a software only product that is accompanied by a MapR Hadoop distro).

Teradata Aster has just joined the fray with Big Analytics Appliance, bundling the Hortonworks Data Platform Hadoop; this move was hardly surprising given their growing partnership around HCatalog, an enhancement of the SQL-like Hive metadata layer of Hadoop that adds features such as a cost optimizer and RESTful interfaces that make the metadata accessible without the need to learn MapReduce or Java. With HCatalog, data inside Hadoop looks like another Aster data table.

Not coincidentally, there is a growing array of analytic tools that are designed to execute natively inside Hadoop. For now they are from emerging players like Datameer (providing a spreadsheet-like metaphor; which just announced an app store-like marketplace for developers), Karmasphere (providing an application develop tool for Hadoop analytic apps), or a more recent entry, Platfora (which caches subsets of Hadoop data in memory with an optimized, high performance fractal index).

Yet, even with Hadoop analytic tooling, there will still be a desire to disguise Hadoop as a SQL data store, and not just for data mapping purposes.

Yet, even with Hadoop analytic tooling, there will still be a desire to disguise Hadoop as a SQL data store, and not just for data mapping purposes. Hadapt has been promoting a variant where it squeezes SQL tables inside HDFS file structures – not exactly a no-brainer as it must shoehorn tables into a file system with arbitrary data block sizes. Hadapt’s approach sounds like the converse of object-relational stores, but in this case, it is dealing with a physical rather than a logical impedance mismatch.

Hadapt promotes the ability to query Hadoop directly using SQL. Now, so does Cloudera. It has just announced Impala, a SQL-based alternative to MapReduce for querying the SQL-like Hive metadata store, supporting most but not all forms of SQL processing (based on SQL 92; Impala lacks triggers, which Cloudera deems low priority). Both Impala and MapReduce rely on parallel processing, but that’s where the similarity ends. MapReduce is a blunt instrument, requiring Java or other programming languages; it splits a job into multiple, concurrently, pipelined tasks where, at each step along the way, reads data, processes it, and writes it back to disk and then passes it to the next task.

Conversely, Impala takes a shared nothing, MPP approach to processing SQL jobs against Hive; using HDFS, Cloudera claims roughly 4x performance against MapReduce; if the data is in HBase, Cloudera claims performance multiples up to a factor of 30. For now, Impala only supports row-based views, but with columnar (on Cloudera’s roadmap), performance could double. Cloudera plans to release a real-time query (RTQ) offering that, in effect, is a commercially supported version of Impala.

By contrast, Teradata Aster and Hortonworks promote a SQL MapReduce approach that leverages HCatalog, an incubating Apache project that is a superset of Hive that Cloudera does not currently include in its roadmap. For now, Cloudera claims bragging rights for performance with Impala; over time, Teradata Aster will promote the manageability of its single appliance, and with the appliance has the opportunity to counter with hardware optimization.

The road to SQL/programmatic convergence

Either way – and this is of interest only to purists – any SQL extension to Hadoop will be outside the Hadoop project. But again, that’s an argument for purists. What’s more important to enterprises is getting the right tool for the job – whether it is the flexibility of SQL or raw power of programmatic approaches.

SQL convergence is the next major battleground for Hadoop. Cloudera is for now shunning HCatalog, an approach backed by Hortonworks and partner Teradata Aster. The open question is whether Hortonworks can instigate a stampede of third parties to overcome Cloudera’s resistance. It appears that beyond Hive, the SQL face of Hadoop will become a vendor-differentiated layer.

Part of conversion will involve a mix of cross-training and tooling automation. Savvy SQL developers will cross train to pick up some of the Java- or Java-like programmatic frameworks that will be emerging. Tooling will help lower the bar, reducing the degree of specialized skills necessary.

And for programming frameworks, in the long run, MapReduce won’t be the only game in town. It will always be useful for large-scale jobs requiring brute force, parallel, sequential processing. But the emerging YARN framework, which deconstructs MapReduce to generalize the resource management function, will provide the management umbrella for ensuring that different frameworks don’t crash into one another by trying to grab the same resources. But YARN is not yet ready for primetime – for now it only supports the batch job pattern of MapReduce. And that means that YARN is not yet ready for Impala or vice versa.

Either way – and this is of interest only to purists – any SQL extension to Hadoop will be outside the Hadoop project. But again, that’s an argument for purists.

Of course, mainstreaming Hadoop – and Big Data platforms in general – is more than just a matter of making it all look like SQL. Big Data platforms must be manageable and operable by the people who are already in IT; they will need some new skills and grow accustomed to some new practices (like exploratory analytics), but the new platforms must also look and act familiar enough. Not all announcements this week were about SQL; for instance, MapR is throwing a gauntlet to the Apache usual suspects by extending its management umbrella beyond the proprietary NFS-compatible file system that is its core IP to the MapReduce framework and HBase, making a similar promise of high performance.

On the horizon, EMC Isilon and NetApp are proposing alternatives promising a more efficient file system but at the “cost” of separating the storage from the analytic processing. And at some point, the Hadoop vendor community will have to come to grips with capacity utilization issues, because in the mainstream enterprise world, no CFO will approve the purchase of large clusters or grids that get only 10 – 15 percent utilization. Keep an eye on VMware’s Project Serengeti.

They must be good citizens in data centers that need to maximize resource (e.g., virtualization, optimized storage); must comply with existing data stewardship policies and practices; and must fully support existing enterprise data and platform security practices. These are all topics for another day.

You may also be interested in:

More Stories By Tony Baer

Tony Baer is Principal Analyst with Ovum, leading Ovum’s research on the software lifecycle. Working in concert with other members of Ovum’s software group, his research covers the full lifecycle from design and development to deployment and management. Areas of focus include application lifecycle management, software development methodologies (including agile), SOA, IT service management/ITIL, and IT management/governance.

Baer has been a noted authority on software development platforms and integration architecture for nearly 20 years. Prior to joining Ovum, he was an independent analyst whose company ‘onStrategies’ delivered software development and integration tools to vendors with technology assessment and market positioning services. He also led Computerwire’s CIO Agenda and Computer Finance end-user best practices research services.

Follow him on Twitter @TonyBaer or read his blog site www.onstrategies.com/blog.

@MicroservicesExpo Stories
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain. In this power panel at @...
This is a no-hype, pragmatic post about why I think you should consider architecting your next project the way SOA and/or microservices suggest. No matter if it’s a greenfield approach or if you’re in dire need of refactoring. Please note: considering still keeps open the option of not taking that approach. After reading this, you will have a better idea about whether building multiple small components instead of a single, large component makes sense for your project. This post assumes that you...
What do dependency resolution, situational awareness, and superheroes have in common? Meet Chris Corriere, a DevOps/Software Engineer at Autotrader, speaking on creative ways to maximize usage of all of the above. Mark Miller, Community Advocate and senior storyteller at Sonatype, caught up with Chris to learn more about what his team is up to.
@DevOpsSummit has been named the ‘Top DevOps Influencer' by iTrend. iTrend processes millions of conversations, tweets, interactions, news articles, press releases, blog posts - and extract meaning form them and analyzes mobile and desktop software platforms used to communicate, various metadata (such as geo location), and automation tools. In overall placement, @DevOpsSummit ranked as the number one ‘DevOps Influencer' followed by @CloudExpo at third, and @MicroservicesE at 24th.
JetBlue Airways uses virtual environments to reduce software development costs, centralize performance testing, and create a climate for continuous integration and real-time monitoring of mobile applications. The next BriefingsDirect Voice of the Customer performance engineering case study discussion examines how JetBlue Airways in New York uses virtual environments to reduce software development costs, centralize performance testing, and create a climate for continuous integration and real-tim...
At its core DevOps is all about collaboration. The lines of communication must be opened and it takes some effort to ensure that they stay that way. It’s easy to pay lip service to trends and talk about implementing new methodologies, but without action, real benefits cannot be realized. Success requires planning, advocates empowered to effect change, and, of course, the right tooling. To bring about a cultural shift it’s important to share challenges. In simple terms, ensuring that everyone k...
SYS-CON Events announced today that SoftNet Solutions will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. SoftNet Solutions specializes in Enterprise Solutions for Hadoop and Big Data. It offers customers the most open, robust, and value-conscious portfolio of solutions, services, and tools for the shortest route to success with Big Data. The unique differentiator is the ability to architect and ...
A completely new computing platform is on the horizon. They’re called Microservers by some, ARM Servers by others, and sometimes even ARM-based Servers. No matter what you call them, Microservers will have a huge impact on the data center and on server computing in general. Although few people are familiar with Microservers today, their impact will be felt very soon. This is a new category of computing platform that is available today and is predicted to have triple-digit growth rates for some ...
As the world moves toward more DevOps and Microservices, application deployment to the cloud ought to become a lot simpler. The Microservices architecture, which is the basis of many new age distributed systems such as OpenStack, NetFlix and so on, is at the heart of Cloud Foundry - a complete developer-oriented Platform as a Service (PaaS) that is IaaS agnostic and supports vCloud, OpenStack and AWS. Serverless computing is revolutionizing computing. In his session at 19th Cloud Expo, Raghav...
SYS-CON Events announced today that Transparent Cloud Computing (T-Cloud) Consortium will exhibit at the 19th International Cloud Expo®, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The Transparent Cloud Computing Consortium (T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data proces...
So you think you are a DevOps warrior, huh? Put your money (not really, it’s free) where your metrics are and prove it by taking The Ultimate DevOps Geek Quiz Challenge, sponsored by DevOps Summit. Battle through the set of tough questions created by industry thought leaders to earn your bragging rights and win some cool prizes.
In case you haven’t heard, the new hotness in app architectures is serverless. Mainly restricted to cloud environments (Amazon Lambda, Google Cloud Functions, Microsoft Azure Functions) the general concept is that you don’t have to worry about anything but the small snippets of code (functions) you write to do something when something happens. That’s an event-driven model, by the way, that should be very familiar to anyone who has taken advantage of a programmable proxy to do app or API routing ...
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes ho...
Analysis of 25,000 applications reveals 6.8% of packages/components used included known defects. Organizations standardizing on components between 2 - 3 years of age can decrease defect rates substantially. Open source and third-party packages/components live at the heart of high velocity software development organizations. Today, an average of 106 packages/components comprise 80 - 90% of a modern application, yet few organizations have visibility into what components are used where.
SYS-CON Events announced today that Enzu will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive advantage. By offering a suite of proven hosting and management services, Enzu wants companies to focus on the core of their online busine...
With emerging ideas, innovation, and talents, the lines between DevOps, release engineering, and even security are rapidly blurring. I invite you to sit down for a moment with Principle Consultant, J. Paul Reed, and listen to his take on what the intersection between these once individualized fields entails, and may even foreshadow.
In many organizations governance is still practiced by phase or stage gate peer review, and Agile projects are forced to accommodate, which leads to WaterScrumFall or worse. But governance criteria and policies are often very weak anyway, out of date or non-existent. Consequently governance is frequently a matter of opinion and experience, highly dependent upon the experience of individual reviewers. As we all know, a basic principle of Agile methods is delegation of responsibility, and ideally ...
Monitoring of Docker environments is challenging. Why? Because each container typically runs a single process, has its own environment, utilizes virtual networks, or has various methods of managing storage. Traditional monitoring solutions take metrics from each server and applications they run. These servers and applications running on them are typically very static, with very long uptimes. Docker deployments are different: a set of containers may run many applications, all sharing the resource...
When we talk about the impact of BYOD and BYOA and the Internet of Things, we often focus on the impact on data center architectures. That's because there will be an increasing need for authentication, for access control, for security, for application delivery as the number of potential endpoints (clients, devices, things) increases. That means scale in the data center. What we gloss over, what we skip, is that before any of these "things" ever makes a request to access an application it had to...
Virgil consists of an open-source encryption library, which implements Cryptographic Message Syntax (CMS) and Elliptic Curve Integrated Encryption Scheme (ECIES) (including RSA schema), a Key Management API, and a cloud-based Key Management Service (Virgil Keys). The Virgil Keys Service consists of a public key service and a private key escrow service.