Welcome!

Microservices Expo Authors: Cynthia Dunlop, Liz McMillan, Carmen Gonzalez, Pat Romanski, Elizabeth White

Related Topics: @CloudExpo, Microservices Expo, Microsoft Cloud, Open Source Cloud, Release Management , Cloud Security

@CloudExpo: Article

Security Automation Connects Silos

The true promise of security automation

A wealth of security information exists in our networks from a variety of sources - policy servers, firewalls, switches, networking infrastructure, defensive components, and more. Unfortunately, most of that information is locked away in separate silos due to differences in products and technologies, as well as by companies' organizational boundaries. Further complicating the issue, information is stored in different formats and communicated over different protocols.

An open standard from the Trusted Computing Group (TCG) offers the capability to centralize communication and coordination of information to enable security automation. The Interface for Metadata Access Points - IF-MAP for short - is like Facebook for network and security technology, allowing real-time sharing of information across a heterogeneous environment.

IF-MAP, part of TCG's Trusted Network Connect (TNC) architecture, makes it possible for any authorized device or system to publish information to a Metadata Access Point (MAP), a clearinghouse for information about who's on the network, what endpoint they're using, how they're behaving, and many other details of the network. Systems can also search the MAP for relevant information and subscribe to any updates to that information. Just as IP transformed communications, IF-MAP revolutionizes the way systems share data.

Security automation is any part of a security system that is able to operate without - or with only limited - administrative involvement. As shown in Figure 1, a security administrator can define a unified security policy that applies to different types of protective mechanisms, such as next-generation firewalls (NGFW), intrusion prevention systems (IPS), unified threat management (UTM) systems, and more. Best-of-breed components from multiple vendors can share information using a standard information bus.

Figure 1: Effective security automation includes several protection mechanisms.

This coordination can extend beyond front-line access control products to back-end systems such as authorization databases, virtualization technology, and reputation systems. A policy server might create and modify policy based completely on the information received from other resources in the environment.

Logs from multiple sources can be collected and correlated by a security information and event management (SIEM) system, which itself acts as both a consumer of information and a provider of real-time intelligence based on that information. Security operations personnel can easily oversee activities in the network and provide human intervention in cases where full automation may not be achievable or desirable. Security automation enhances fundamental security solutions, adding dynamic, responsive, intelligent decision-making.

Establishing Network Trust
One of the basic solutions enabled by the TNC architecture is Comply to Connect, which incorporates Network Access Control (NAC) principles - an endpoint must first show its compliance with selected endpoint health requirements before being granted access to the network. Figure 2 shows a common Comply to Connect scenario.

Figure 2: The TNC architecture enables evaluation and enforcement of compliance at admission.

The endpoint, on the left, is a device attempting to access a protected network. The enforcement point is a guard that grants or denies access based on instructions from the policy server. The policy server is really the brains of the operation; it looks at the configured policy and decides what level of access should be granted. Then it informs the enforcement point, which executes those instructions.

Many enforcement options exist; the example in Figure 2 shows a wireless access point and a switch, but environments may also use a firewall or a virtual private network (VPN) gateway. Each of these has its own pros and cons; for example, a wireless access point with 802.1X can totally block unauthorized users. But while it provides admission control, it doesn't offer enforcement deeper in the network. For that reason, most NAC solutions support a combination of different enforcement points, which can be used individually or in combination.

The security policy controlling the compliance check shown in Figure 2 is quite simple: every Windows 7 endpoint on the network must have a self-encrypting drive (SED), up-to-date anti-virus protection, and a personal firewall. When a new Windows 7 endpoint comes on the network, the enforcement point will query it and then consult the policy server. If the endpoint complies with security policy, it is given access to the production network. Another endpoint that does not have an SED may be given only limited access to the network. That way, if either endpoint is lost or stolen, protected information is only on the endpoint that could store it securely on an SED.

Expanding Network Trust Evaluation
Behavior monitoring is another way to evaluate an endpoint. Many security-related sensor devices are already deployed in networks to monitor behavior: intrusion detection systems, leakage detection systems, endpoint profiling systems, and more. The TNC architecture lets users integrate those existing systems with each other and with the NAC solution by sharing information via a MAP.

Figure 3 shows an approach to check behavior. Security sensors in the network monitor behavior, and a security policy identifies acceptable behavior.

Figure 3: Behavior checking enables automated response to changes in the endpoint's activity.

Once an endpoint has connected to the network, even if it has passed authentication and compliance checks, it could behave in an unauthorized fashion. If the endpoint starts violating security policy by trying to spread a worm, that traffic is detected and stopped by an IPS sensor.

Even more important, that sensor publishes information to the MAP about the attack it stopped. The MAP notifies the policy server, which evaluates its security policy and instructs the enforcement point to move the endpoint to a remediation network until it can be addressed.

The end result is an entire network security system that is working together. Each part performs its function, and each piece is integrated with the whole using the open IF-MAP standard.

Extending Security to Mobile Devices
TNC standards have enabled NAC to evolve into a foundation technology for business requirements such as mobile security and Bring Your Own Device (BYOD). A common scenario in today's connected world occurs when a mobile user accesses the Internet and social networks on a personal device, such as a smartphone, which they also use to access their corporate network. If the smartphone inadvertently becomes infected with malware, corporate data on that device is now at risk. And it's even worse when the user connects their smartphone to the corporate network; the attacker, who has taken control of the device, can access sensitive information.

This situation occurs when a company's security team lacks the tools to accommodate employees using their own consumer devices to improve productivity. Without the appropriate technology, the IT team cannot:

  • detect malware on the mobile device
  • protect the user from cloud-based threats
  • control access based on user identity, device, and location
  • coordinate security controls to protect sensitive information

This clearly needs a new approach!

Addressing the new requirements of BYOD and providing broad protection involves flexible deployment models that can be tailored to individual environments and security context, and coordination to keep users protected against the dynamic threat landscape.

Security automation makes it possible to detect and address compromised mobile devices; protect the user from malicious sites and applications; restrict network and resource access based on user identity, device, and location; and correlate endpoint activity monitoring across the corporate network infrastructure.

Leveraging Standard Network Security Metadata
These capabilities are enabled by TNC's standardization of basic metadata for network security. Metadata is the information stored in a MAP, representing anything that is known about the network: traffic flows, scan results, user authentications, or other events. In the case above, metadata represents information about network components and applicable security policies. The MAP is a clearinghouse for metadata; MAP clients can publish metadata to it, search it for specific metadata, and/or subscribe to metadata about endpoints in the network.

These inquiries include common things that it might be helpful to know about an endpoint - the type of device, identity of the user operating the device, role assigned to that user, association between the MAC address and IP address of the endpoint, location of the endpoint, and any events related to that endpoint.

Extending Security Automation to Other Use Cases
While standard metadata is useful for out-of-box interoperability, much more information about an endpoint or a network is available. IF-MAP can be extended by creation of vendor-specific metadata, similar to Vendor-Specific Attributes (VSAs) in RADIUS, enabling anyone to publish anything that can be expressed in XML!

Imagine a manufacturing line, where a physical process is controlled by a digital component called a Programmable Logic Controller (PLC). An operator display panel, the Human Machine Interface (HMI), is typically physically remote from the actual process that needs monitoring. As changes in the process occur, the operator display updates in real-time.

Many HMIs use a legacy protocol called Modbus to poll the PLC, retrieve these process variables, and display them. Originally designed to be run over a serial connection, Modbus has been ported to TCP. One of the problems with the Modbus protocol and many others in this space is that there are zero security features in the protocol - no authentication, no authorization - which means no way of knowing whether a requestor is authorized to gain access requested, or even who is sending data the request. If an endpoint (or intruder) can ping the PLC, it can issue commands to it!

Many control systems components operate this way. Until now, they have been small islands of automation with very little interconnection to other systems. Running over a serial bus required physical serial connections - typically, the operator had to be present in front of the machine to affect it, so physical security was sufficient. And once these systems are in place, they are designed to stay in production for decades. So now these systems are getting more and more interconnected with the enterprise network - and, by extension, to external networks - and they encounter the same types of security issues as enterprise systems.

Overlaying Security onto Industrial Control Systems
A single manufacturing line could have hundreds, or even thousands, of these PLCs. Replacing them is out of the question, as is retro-fitting them to add on security. But what if a transparent security overlay was inserted to protect these legacy components?

Deployment and lifecycle management for such an overlay would be a huge challenge - unless there was a mechanism for provisioning certificates, communication details, and access control policies to the overlay components. That's exactly what one manufacturing company has done with IF-MAP, by using vendor-specific metadata for provisioning of certificate information and access control policy, as shown in Figure 4.

Figure 4: IF-MAP enabled security overlay protects industrial control system components.

The first step is to add the overlay protection. In this case, the enforcement points are customized components, designed for Supervisory Control And Data Acquisition (SCADA) networks, that can create an OpenHIP "virtual private LAN" on top of standard IP networks. This requires no changes to the underlying network, protects communications between SCADA devices, and is completely transparent to the protected SCADA devices.

A MAP and a provisioning client enable centralized deployment, provisioning, and lifecycle management for the myriad enforcement points. The provisioning client publishes metadata to the MAP to define the HMIs and PLCs and to specify security policies that allow them to talk to each other, but do not allow external access to them.

For example, when an HMI comes into the network and queries for a PLC, the HMI does an Address Resolution Protocol (ARP) lookup. The enforcement point receives that traffic, searches the MAP, and finds the access control policy determining whether this specific HMI can talk to that particular PLC. Enforcement points can be moved around the network without requiring manual reconfiguration or reprovisioning, since all of the provisioning is centralized via the MAP.

This is not just a neat thought experiment - it is actually in production deployment on hundreds of endpoints in critical manufacturing lines today!

The Future of Security Automation
We've barely scratched the surface of security automation. For one thing, it goes far beyond access control. Imagine...

  • A content management database (CMDB) receives notification of a new device on the network and scans the new endpoint, then updates its data store
  • An analysis engine observes some behavior on the network and requires more information about the associated endpoint, so it requests an investigation by another component such as an endpoint profiler or vulnerability scanner
  • Carrier routers redirect traffic through deep packet inspection based on suspicious user activity
  • A security administrator modifies an existing security policy, or adds a new policy, and various policy servers / sensors are notified, triggering a re-evaluation of the network's endpoints
  • An application server publishes a request for bandwidth for a particular user based on the service the user is accessing, and network infrastructure components change QoS settings for those traffic flows based on that request
  • An IF-MAP enabled OpenFlow switch controller makes packet-handling decisions based on information from other network components
  • An analysis system determines that there's an attack underway; in addition to triggering a response, it notifies security administrators of the attack taking place, populating a dashboard with information to create a "heat map" of the attack

All of these are examples of a common three-step process: sensing, analysis, and response. Security automation is enabled by the abstraction and coordination of these functions across multiple disparate components in the network.

Imagine the power gained by linking together information from all of the various infrastructure and security technologies in a network and using that information to make dynamic, intelligent, automated decisions. That's the true promise of security automation - and the realization of that promise is in its infancy.

More Stories By Lisa Lorenzin

Lisa Lorenzin is a member of the TNC Work Group at Trusted Computing Group and a Principal Solutions Architect at Juniper Networks.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
For Valentine's Day, here's a lighthearted look at the "relationship" between two complementary technologies: service virtualization and cloud dev/test labs. Hey, I know it's been a while since we started being "a thing." When we met, everyone said you were just mocking, and that I wasn't real enough to make a living, with my head in the clouds. Yet, here we are, a few years later.
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
Join us at Cloud Expo | @ThingsExpo 2016 – June 7-9 at the Javits Center in New York City and November 1-3 at the Santa Clara Convention Center in Santa Clara, CA – and deliver your unique message in a way that is striking and unforgettable by taking advantage of SYS-CON's unmatched high-impact, result-driven event / media packages.
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
In most cases, it is convenient to have some human interaction with a web (micro-)service, no matter how small it is. A traditional approach would be to create an HTTP interface, where user requests will be dispatched and HTML/CSS pages must be served. This approach is indeed very traditional for a web site, but not really convenient for a web service, which is not intended to be good looking, 24x7 up and running and UX-optimized. Instead, talking to a web service in a chat-bot mode would be muc...
SYS-CON Events announced today that Men & Mice, the leading global provider of DNS, DHCP and IP address management overlay solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. The Men & Mice Suite overlay solution is already known for its powerful application in heterogeneous operating environments, enabling enterprises to scale without fuss. Building on a solid range of diverse platform support,...
SYS-CON Events announced today that Column Technologies will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Established in 1998, Column Technologies is a global technology solutions provider with over 400 employees, headquartered in the United States with offices in Canada, India, and the United Kingdom. Column Technologies provides “Best of Breed” technology solutions that automate the key DevOps principal...
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes ho...
SYS-CON Events announced today that AppNeta, the leader in performance insight for business-critical web applications, will exhibit and present at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. AppNeta is the only application performance monitoring (APM) company to provide solutions for all applications – applications you develop internally, business-critical SaaS applications you use and the networks that deli...
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
Microservices are a type of software architecture where large applications are made up of small, self-contained units working together through APIs that are not dependent on a specific language. Each service has a limited scope, concentrates on a specific task and is highly independent. This setup allows IT managers and developers to build systems in a modular way. In his book, “Building Microservices,” Sam Newman said microservices are small, focused components built to do a single thing very w...
When building large, cloud-based applications that operate at a high scale, it’s important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. “Fly two mistakes high” is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee...
WebSocket is effectively a persistent and fat pipe that is compatible with a standard web infrastructure; a "TCP for the Web." If you think of WebSocket in this light, there are other more hugely interesting applications of WebSocket than just simply sending data to a browser. In his session at 18th Cloud Expo, Frank Greco, Director of Technology for Kaazing Corporation, will compare other modern web connectivity methods such as HTTP/2, HTTP Streaming, Server-Sent Events and new W3C event APIs ...
At first adopted by enterprises to consolidate physical servers, virtualization is now widely used in cloud computing to offer elasticity and scalability. On the other hand, Docker has developed a new way to handle Linux containers, inspired by version control software such as Git, which allows you to keep all development versions. In his session at 17th Cloud Expo, Dominique Rodrigues, the co-founder and CTO of Nanocloud Software, discussed how in order to also handle QEMU / KVM virtual machin...
Microservices are all the rage right now — and the industry is still learning, experimenting, and developing patterns, for successfully designing, deploying and managing Microservices in the real world. Are you considering jumping on the Microservices-wagon? Do Microservices make sense for your particular use case? What are some of the “gotchas” you should be aware of? This morning on #c9d9 we had experts from popular chat app Kik, SMB SaaS platform Yodle and hosted CI solution Semaphore sha...
How is your DevOps transformation coming along? How do you measure Agility? Reliability? Efficiency? Quality? Success?! How do you optimize your processes? This morning on #c9d9 we talked about some of the metrics that matter for the different stakeholders throughout the software delivery pipeline. Our panelists shared their best practices.
SYS-CON Events announced today that FalconStor Software® Inc., a 15-year innovator of software-defined storage solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. FalconStor Software®, Inc. (NASDAQ: FALC) is a leading software-defined storage company offering a converged, hardware-agnostic, software-defined storage and data services platform. Its flagship solution FreeStor®, utilizes a horizonta...
Sensors and effectors of IoT are solving problems in new ways, but small businesses have been slow to join the quantified world. They’ll need information from IoT using applications as varied as the businesses themselves. In his session at @ThingsExpo, Roger Meike, Distinguished Engineer, Director of Technology Innovation at Intuit, showed how IoT manufacturers can use open standards, public APIs and custom apps to enable the Quantified Small Business. He used a Raspberry Pi to connect sensors...
Father business cycles and digital consumers are forcing enterprises to respond faster to customer needs and competitive demands. Successful integration of DevOps and Agile development will be key for business success in today’s digital economy. In his session at DevOps Summit, Pradeep Prabhu, Co-Founder & CEO of Cloudmunch, covered the critical practices that enterprises should consider to seamlessly integrate Agile and DevOps processes, barriers to implementing this in the enterprise, and pr...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...