Click here to close now.




















Welcome!

Microservices Expo Authors: Trevor Parsons, SmartBear Blog, Ruxit Blog, Elizabeth White, Pat Romanski

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Cloud Security, Government Cloud

@CloudExpo: Article

The Intersection of Big Data and Cloud Computing

Looking for the Right Answers in the Clouds

Everyone's talking about Big Data today. Is Big Data a buzz word, real phenomenon, or next evolution in our world? In this AFCEA white paper, we surveyed many notable experts to gain perspectives on Big Data.  This paper serves as a primer on Big Data characteristics and provides insights into technology challenges and solutions.  The intent is to help federal agencies, companies, and communities develop new solutions for consuming, storing, processing, and analyzing Big Data in order to find the right answers needed to accomplish the mission, gain competitive advantage, and collaborate in more meaningful ways.

It is a BIG DATA world with a current volume of 1.8 zetabytes of data created per year and doubling every two years.  Technologies--cloud computing, Hadoop, MapReduce, flash array storage, business intelligence tools, etc-- are vital to an organization's ability to keep pace with Big Data.  The Big Data architecture introduces a fourth layer in the cloud computing stack.  Knowledge as a Service joins the traditional cloud layers (Infrastructure as a Service, Platform as a Service, and Software as a Service) as a focused layer dedicated to the management and analytics of Big Data including binding concepts such as pedigree, lineage, and provenance of data.  Harnessing Big Data will require a combination of technology implementations, business process changes, and workforce training to achieve breakthroughs for your organization.

What Is Big Data?
Let's start with a simple definition. McKinsey and Company define Big Data as "Datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze". Big Data can also be characterized by a series of descriptors starting with the letter V.  In the 1990s, the word "volume" emerged to describe the rapidly growing rate of data in the Internet age.  The table below, from Barbara Wixom of the University of Virginia, offers 15 different data dimensions for Big Data.  For brevity's sake, let's examine the four most common descriptors of volume, velocity, variety, and validity.

Source:  Barbara Wixom, 2012

The volume of data produced in a 24-hour period is staggering and amounts to 1.8 zetabytes per year.  Every day, 2 million blogs are posted, 172 million users visit Facebook (spending a combined 4.7 billion minutes on a single social networking site), 51 million minutes of video are uploaded, and 250 million digital photos are shared.   We continue to generate 294 billion emails each day, even though many consider email an outdated form of communication.

Perhaps more fascinating is that data velocity is accelerating.  Velocity is the speed at which data is growing and this extreme speed (1.8 zettabytes now and 3.6 zettabytes in 2013) is taxing our current information technology capabilities.  According to an IDC Digital Universe Study, we are doubling the world's information every 18 months. This trend will not slow down anytime soon.  Will we be able to manage data in our near future?  Did you know that each second of high-definition video generates two thousand times as many bytes as one single page of text?  IBM research indicates that 90 percent of the world's data has been created in the last two years alone.  Apple is selling more iPhones per day than they are babies born in the world, as noted by MBAOnline.com.    Samsung's smart phone sales are ahead of Apple sales at an estimated 41 million to 32.6 million for 2Q2012, and demonstrate the rise of additional handheld platforms contributing to the speed at which we create new data.

The third descriptor for Big Data is variety or the types of data being created.  You can generally split variety into structured and unstructured form.  The 294 billion emails per day can be considered structured text and one of the simplest forms of Big Data.  Financial transactions including movie ticket sales, gasoline sales, restaurant sales, etc., are generally structured and make up a small fraction of the data running around the global networks today. Unstructured data is a primary source of growth in variety.  Music is an ever increasing variety of data and we are streaming nearly 19 million hours of music each day over the free music service, Pandora.  Spotify, a paid streaming media service, is now the number two revenue source for music labels-second behind Apple's iTunes.  Old television shows and movies are another source of variety in the non-structured realm.  There are over 864,000 hours of video uploaded to YouTube each day.  According to MBAOnline.com, we could pipe 98 years of non-stop cat videos into everyone's home for endless hours of boredom, fun, or insanity!

The biggest challenge from a data variety perspective is harnessing the unstructured information for business relevance and data driven decisions.  We've spent decades perfecting analytic tools for structured information.  Analytic tools for unstructured data are more limited and less intuitive. Not all relevant marketing data, as an example, is confined to structured business transactions.  Tweets, Facebook posts, YouTube video, and so forth, now represent valid indicators to a business.  Corporate reputations can be improved or demolished nearly instantaneously by these new sources of data.

Validity is a singular term designed to characterize the quality, pedigree, lineage, provenance, value, integrity, setting, and context for the data.  Structured and unstructured data needs validity characterization and it should follow the data from acquisition to retirement.  Information from a trusted source is more highly valued than information from a new or casual source.  Over time, however, the new source can be further tested and validity of prior data from that source may increase or decrease.  Maintaining data heritage is more complex than meta-data tagging and requires situational awareness (i.e., context) when using the data for business decisions.

Is Cloud Computing ready for Big Data?  Is IT ready for Big Data?
Our survey respondents (notable experts in the Big Data, Cloud Computing, and IT industry) generally concurred on the need for fast, flexible IT infrastructure to support Big Data.  Anything that takes the infrastructure challenges out of the way of the business was deemed part of the critical path to success.  Tim Estes, Digital Reasoning, noted the cloud "gives you the speed you need".  Similarly, Jeff Jonas from IBM declared any infrastructure that lets you "scale up and out affordably is goodness."  Four specific areas were identified for deeper investigation as we considered if Cloud Computing and IT departments were ready for Big Data:  security; store and process; sensemaking; and stewardship.

Security
Security remains the number one obstacle to preventing IT organizations from adopting Cloud Computing.  This same AFCEA sub-committee explored security in cloud computing in a white paper released in 2011. The full white paper can be reviewed through this link.

In summary, the 2011 AFCEA white paper noted that cloud computing offers significantly improved visibility and insight that drives new cyber security solutions. Access to cloud computing services in traditional computing environments and in modern mobile environments provides numerous opportunities to gain visibility and retrieve security data points across your infrastructure, platforms, and applications.  Collecting pulse points from the high-speed networks used to connect to your cloud provides insight into threats attempting to breach the perimeter of your infrastructure.  Remote access devices and global position/location can be detected through other data points, triggering the requirement for additional security access and authorization controls while also providing real-time knowledge of the security status of end-user devices.  Constant monitoring of applications and platforms offers additional data collection points for discovering vulnerabilities in applications that can be used to infiltrate the infrastructure.  Moreover, merging measures and metrics from co-located environments or other cloud locations in your global enterprise can add yet another layer of data to the collection.

Store and Process
A May 2012 Meritalk Study called "The Big Data Gap" noted that most government IT leaders are fairly positive about the storage and processing resources needed to harness Big Data.  The study indicates the respondents currently own about half of the compute resources they actually need.  The fear is they have only about 20 percent of the capacity (in storage and processing power) needed to manage the Big Data headed their way.  Industry cloud providers have developed efficient Hadoop cloud-based architectures to handle Big Data.  Left on its own, Hadoop will very efficiently process your Big Data but will do so leaving no resources available for other work.  Experience indicates restrictions are required on Hadoop jobs to prevent Hadoop from grabbing all available storage and processing resources from the cloud.  Industry advances for storage and processing are rapidly emerging to respond to Big Data requirements.  Flash array storage is now available at enterprise-class levels from companies like Whiptail and EMC.  The InfiniBand trade association created a high performance computing input/output  fabric to deliver the internal data center speed needed for Big Data.  Gaming providers like NVidia have implemented high-speed clouds for acceleration using graphical processing units (GPU).  Moreover, global network providers continue to drive performance advances in optical and electrical equipment with a goal of keeping pace with the explosion of streaming bits and bytes.  Cisco's Global Forecast predicts global network traffic will exceed 110 Exabytes per month by 2016.  More answers and technologies are emerging each day to overcome remaining deficiencies in storage and processing capabilities for Big Data.

Sensemaking
In the world of Big Data, making sense of the data is not trivial.  The volume, velocity, variety, and validity of the data now available can create link analysis diagrams more closely resembling nature's most intricate floral design.  You would need Sheldon Cooper's Big Bang Theory eidetic memory to begin to make sense of the data...not to mention a movie theater-sized computer monitor screen!  What if your primary viewing device is a smart phone or a 5 inch tablet?   Both Gartner and Forrester predict significant increases in the use of mobile devices as Business Intelligence access platforms.

What you need are solutions that make sense of new data in time to derive new observations as the observations actually happen.  You also need solutions that allow you to make decisions fast enough to do something about the old and new observations while the transaction is still happening.  The tools must protect various slices of the complex data to ensure the user is approved to see the underlying data sources based on the provenance of each individual data element.  Advanced analytic and security tools to separate data appropriately, whether your data is in a public cloud or a private cloud, are necessary.  Commercial cloud providers are keenly focused on data and privacy protection to ensure only authorized users gain access--using technologies such as encryption, identity management, authorization services, etc.  Commercial cloud providers are accumulating very successful track records for safeguarding information.

Stewardship
The fourth challenge for the IT department is data stewardship-often considered data ownership and/or data management.  The Big Data Gap MeriTalk survey from May 2012 indicated that nearly 70 percent of respondents thought the "IT Department" had some role in owning and managing the data.  Less than 30 percent of respondents indicated the department generating the data should have these roles.  Regardless of the decision, someone has to own and manage the data.

The link between financial performance and effective data management is strengthening as companies learn to harvest Big Data.  The Economist Intelligence Unit indicates strategies for collecting and analyzing data need to rise to the C-suite level.  In essence, Big Data makes IT even more strategic to the business.  New/modified career tracks are emerging (in forward-leaning organizations) to develop employees with the skills necessary to validate data sources, define and measure pedigree and lineage of data sources, and effectively manage Big Data for an enterprise.

Winning in a Big Data World
As noted above, Big Data is complex and the challenges it presents are daunting.  In today's environment, Big Data demands phenomenal corporate balance.   Success and competitive advantage require you to focus on technologies, business processes, and people.  Your company needs:

  • New technologies for controlling Big Data;
  • Business processes designed for rapid decisions using Big Data; and
  • People trained to make smart decisions exploiting Big Data.

Technology

The Cloud Computing technology stack is evolving to handle Big Data.  Our survey revealed the need for a new, four layer stack associated with a Big Data architecture.  The Cloud stack of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) must shift to accommodate the introduction of Knowledge as a Service (KaaS) in between PaaS and SaaS.    This figure depicts the insertion of the new KaaS layer to drive Big Data results.  Without a Knowledge layer, companies end up investing heavily in customer knowledge engineering, adaptors, and connectors--essentially ending the elastic advantage of the Cloud at the IaaS layer.  This slows application development and requires human-intensive work on data maps/models and ontologies across disparate systems.  The KaaS layer pushes you into a heavily automated, algorithm-driven common knowledge layer that embraces Cloud speed and elasticity.

Innovators have embraced this KaaS idea with Google's PageRank algorithm as an example of a common index with searchable attributes capable of working across the diversity of the Web without relying on substantial amounts of manual organization. Deep insights from Big Data require semantic silos-both structured and unstructured content--to be "knowledge processed" and moved into the Cloud in order to capitalize on the business advantages opportunities of data mining.  The specific technologies to ingest and hold structured and unstructured data (as repositories) are similar with any processing differences derived from the complexity of business needs.  The repositories are living; as new data arrives, its connection to existing data will be identified and may new data may change the value of the old data to your business.  This concept of "data finding data" is the subject of IBM efforts under the direction of Jeff Jonas.  You can read more at the here.

Business Processes
In a Big Data world, companies should pay as much attention to the data as they do their other corporate assets, e.g., labor and capital.  Company goals must be clear with labor, capital, and data aligned.  Your employees should be empowered to make decisions with proper checks, balances, and audits built in.  Speed is critical and using multi-layered and lengthy paths to finalize decisions will limit your competitive advantage.  Business processes designed around lessons learned and adaptability will facilitate Big Data organizations.  Governance models and decision thresholds for employees should be clear, with escalation paths obvious and some understanding of the potential "mosaic effect" present.  The "mosaic effect" occurs when seemingly unclassified or benign data are combined together by an analyst with a resulting picture that becomes confidential or more highly classified.  Training your employees to recognize the "mosaic effect" is necessary to protect sensitive results, intellectual property, and competitive advantage.    Finally, adhering to strict data management rules (e.g., process once and use many times), will facilitate long-term Big Data utility by protecting the integrity and provenance of your corporate data.

People
The third element in your winning balance in a Big Data world is your people.  Bad decisions in today's world are more obvious and less tolerated.  Sometimes, analysis of Big Data drives a company to the wrong conclusion or decision.  Other times, Big Data can be successfully used to back up instincts with facts.  Big Data in financial institutions has become so complex, the Federal Deposit Insurance Corporation created an entire office for overseeing Complex Financial Institutions (FDIC/CFI).

Companies that successfully train their people to use Big Data wisely will reap financial and market share rewards.  Alternative analysis, critical thinking, and other analytic skills-combined with experiential learning and mentoring--will be necessary to ensure your team is seeing the right answer in the possibilities.  Thornton May's book, The New Know, highlights the requirement for companies to capitalize on data and brain power to have good knowledge of what happens next...not what happened in the past.  Generally speaking, everybody will have a Moneyball team in the future.  What's going to set your team apart?

Big Data Summary
Cloud Computing provides the technology foundation to capitalize on Big Data for corporate success.  The flexible infrastructure offered through Cloud Computing--combined with increased storage and processing power of new technologies in the Cloud-provide the rich, agile compute platform to handle the volume, variety, velocity, and validity needs of Big Data.  Insert a fourth layer into the Cloud Computing stack (Knowledge as a Service) between  PaaS and Saas to reduce human-intensive ontology work in favor of automated, algorithm-driven features designed to exploit disparate data in the Cloud.

Beyond technology, Big Data is likely to require changes in your business processes to ensure decisions with proper analytic judgment with necessary oversight operating at the right speed for competitive advantage.  Spend time training your people to analyze data from alternative points of view and to quickly accept automatically-generated observations.  People make decisions; data doesn't.  Drowning a poorly trained employee in loads of data will still produce poor decisions.

Social media, instantaneous access, and an "always connected" population of stakeholders will increasingly demand transparent accountability.  Use Big Data through Cloud Computing to demonstrate your corporate decisions are clearly backed by facts.

Sources
Cloud and Big Data Experts Surveyed

  • Zalmai Azmi, Senior Vice President, CACI International, Inc.
  • Charles Croom, Vice President, Lockheed Martin Information Technology
  • Christopher Day, Senior Vice President, Terremark Federal Group (A Verizon Company)
  • John Dvorak, Federal Bureau of Investigation
  • Tim Estes, Chairman and CEO, Digital Reasoning Systems
  • Jeff Jonas, Chief Scientist, IBM
  • Barbara Wixon, Associate Professor of Commerce, University of Virginia

Other Sources Cited and/or Used

  • How Much Data Will Humans Create & Store This Year, Josh Catone (June 28, 2011)
  • Three Big WHATs to Identify Big Data Challenges, Pearl Zhu (April 2012)
  • Bringing big data to the enterprise, IBM
  • The BIG Picture on BIG DATA, GovConExec (April 2012)
  • Big Data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute (May 2011)
  • Big Data: Harnessing a game-changing asset, The Economist Intelligence Unit (September 2011)
  • A Day in the Life of the Internet, Matt Silverman (March 06, 2012)
  • How to Be Ready for Big Data, Thor Olavsrud (March 20, 2012)
  • The Big Data Gap, Meritalk (May 7, 2012)
  • Cloudy with a Chance of Savings, Meritalk (April 25, 2012)
  • The New Know, Thornton May
  • Moneyball, Michael Lewis

More Stories By Jill Tummler Singer

Jill Tummler Singer is CIO for the National Reconnaissance Office (NRO)- which as part of the 16-member Intelligence Community plays a primary role in achieving information superiority for the U.S. Government and Armed Forces. A DoD agency, the NRO is staffed by DoD and CIA personnel. It is funded through the National Reconnaissance Program, part of the National Foreign Intelligence Program.

Prior to joining the NRO, Singer was Deputy CIO at the Central Intelligence Agency (CIA), where she was responsible for ensuring CIA had the information, technology, and infrastructure necessary to effectively execute its missions. Prior to her appointment as Deputy CIO, she served as the Director of the Diplomatic Telecommunications Service (DTS), United States Department of State, and was responsible for global network services to US foreign missions.

Singer has served in several senior leadership positions within the Federal Government. She was the head of Systems Engineering, Architecture, and Planning for CIA's global infrastructure organization. She served as the Director of Architecture and Implementation for the Intelligence Community CIO and pioneered the technology and management concepts that are the basis for multi-agency secure collaboration. She also served within CIA’s Directorate of Science and Technology.

@MicroservicesExpo Stories
Several years ago, I was a developer in a travel reservation aggregator. Our mission was to pull flight and hotel data from a bunch of cryptic reservation platforms, and provide it to other companies via an API library - for a fee. That was before companies like Expedia standardized such things. We started with simple methods like getFlightLeg() or addPassengerName(), each performing a small, well-understood function. But our customers wanted bigger, more encompassing services that would "do ...
The pricing of tools or licenses for log aggregation can have a significant effect on organizational culture and the collaboration between Dev and Ops teams. Modern tools for log aggregation (of which Logentries is one example) can be hugely enabling for DevOps approaches to building and operating business-critical software systems. However, the pricing of an aggregated logging solution can affect the adoption of modern logging techniques, as well as organizational capabilities and cross-team ...
Docker containerization is increasingly being used in production environments. How can these environments best be monitored? Monitoring Docker containers as if they are lightweight virtual machines (i.e., monitoring the host from within the container), with all the common metrics that can be captured from an operating system, is an insufficient approach. Docker containers can’t be treated as lightweight virtual machines; they must be treated as what they are: isolated processes running on hosts....
In today's digital world, change is the one constant. Disruptive innovations like cloud, mobility, social media, and the Internet of Things have reshaped the market and set new standards in customer expectations. To remain competitive, businesses must tap the potential of emerging technologies and markets through the rapid release of new products and services. However, the rigid and siloed structures of traditional IT platforms and processes are slowing them down – resulting in lengthy delivery ...
Culture is the most important ingredient of DevOps. The challenge for most organizations is defining and communicating a vision of beneficial DevOps culture for their organizations, and then facilitating the changes needed to achieve that. Often this comes down to an ability to provide true leadership. As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership ab...
Puppet Labs has announced the next major update to its flagship product: Puppet Enterprise 2015.2. This release includes new features providing DevOps teams with clarity, simplicity and additional management capabilities, including an all-new user interface, an interactive graph for visualizing infrastructure code, a new unified agent and broader infrastructure support.
Skeuomorphism usually means retaining existing design cues in something new that doesn’t actually need them. However, the concept of skeuomorphism can be thought of as relating more broadly to applying existing patterns to new technologies that, in fact, cry out for new approaches. In his session at DevOps Summit, Gordon Haff, Senior Cloud Strategy Marketing and Evangelism Manager at Red Hat, discussed why containers should be paired with new architectural practices such as microservices rathe...
Whether you like it or not, DevOps is on track for a remarkable alliance with security. The SEC didn’t approve the merger. And your boss hasn’t heard anything about it. Yet, this unruly triumvirate will soon dominate and deliver DevSecOps faster, cheaper, better, and on an unprecedented scale. In his session at DevOps Summit, Frank Bunger, VP of Customer Success at ScriptRock, will discuss how this cathartic moment will propel the DevOps movement from such stuff as dreams are made on to a prac...
It’s been proven time and time again that in tech, diversity drives greater innovation, better team productivity and greater profits and market share. So what can we do in our DevOps teams to embrace diversity and help transform the culture of development and operations into a true “DevOps” team? In her session at DevOps Summit, Stefana Muller, Director, Product Management – Continuous Delivery at CA Technologies, answered that question citing examples, showing how to create opportunities for ...
SYS-CON Events announced today that DataClear Inc. will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. The DataClear ‘BlackBox’ is the only solution that moves your PC, browsing and data out of the United States and away from prying (and spying) eyes. Its solution automatically builds you a clean, on-demand, virus free, new virtual cloud based PC outside of the United States, and wipes it clean...
In his session at 17th Cloud Expo, Ernest Mueller, Product Manager at Idera, will explain the best practices and lessons learned for tracking and optimizing costs while delivering a cloud-hosted service. He will describe a DevOps approach where the applications and systems work together to track usage, model costs in a granular fashion, and make smart decisions at runtime to minimize costs. The trickier parts covered include triggering off the right metrics; balancing resilience and redundancy ...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advance...
What does “big enough” mean? It’s sometimes useful to argue by reductio ad absurdum. Hello, world doesn’t need to be broken down into smaller services. At the other extreme, building a monolithic enterprise resource planning (ERP) system is just asking for trouble: it’s too big, and it needs to be decomposed.
Early in my DevOps Journey, I was introduced to a book of great significance circulating within the Web Operations industry titled The Phoenix Project. (You can read our review of Gene’s book, if interested.) Written as a novel and loosely based on many of the same principles explored in The Goal, this book has been read and referenced by many who have adopted DevOps into their continuous improvement and software delivery processes around the world. As I began planning my travel schedule last...
SYS-CON Events announced today that G2G3 will exhibit at SYS-CON's @DevOpsSummit Silicon Valley, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Based on a collective appreciation for user experience, design, and technology, G2G3 is uniquely qualified and motivated to redefine how organizations and people engage in an increasingly digital world.
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
SYS-CON Events announced today the Containers & Microservices Bootcamp, being held November 3-4, 2015, in conjunction with 17th Cloud Expo, @ThingsExpo, and @DevOpsSummit at the Santa Clara Convention Center in Santa Clara, CA. This is your chance to get started with the latest technology in the industry. Combined with real-world scenarios and use cases, the Containers and Microservices Bootcamp, led by Janakiram MSV, a Microsoft Regional Director, will include presentations as well as hands-on...
Any Ops team trying to support a company in today’s cloud-connected world knows that a new way of thinking is required – one just as dramatic than the shift from Ops to DevOps. The diversity of modern operations requires teams to focus their impact on breadth vs. depth. In his session at DevOps Summit, Adam Serediuk, Director of Operations at xMatters, Inc., will discuss the strategic requirements of evolving from Ops to DevOps, and why modern Operations has begun leveraging the “NoOps” approa...
DevOps has traditionally played important roles in development and IT operations, but the practice is quickly becoming core to other business functions such as customer success, business intelligence, and marketing analytics. Modern marketers today are driven by data and rely on many different analytics tools. They need DevOps engineers in general and server log data specifically to do their jobs well. Here’s why: Server log files contain the only data that is completely full and accurate in th...
The Microservices architectural pattern promises increased DevOps agility and can help enable continuous delivery of software. This session is for developers who are transforming existing applications to cloud-native applications, or creating new microservices style applications. In his session at DevOps Summit, Jim Bugwadia, CEO of Nirmata, will introduce best practices, patterns, challenges, and solutions for the development and operations of microservices style applications. He will discuss ...