Welcome!

SOA & WOA Authors: Trevor Parsons, Carmen Gonzalez, Elizabeth White, Rex Morrow, Datical, Hovhannes Avoyan

Related Topics: Cloud Expo, SOA & WOA, Virtualization, Web 2.0, Security, GovIT

Cloud Expo: Article

The Intersection of Big Data and Cloud Computing

Looking for the Right Answers in the Clouds

Everyone's talking about Big Data today. Is Big Data a buzz word, real phenomenon, or next evolution in our world? In this AFCEA white paper, we surveyed many notable experts to gain perspectives on Big Data.  This paper serves as a primer on Big Data characteristics and provides insights into technology challenges and solutions.  The intent is to help federal agencies, companies, and communities develop new solutions for consuming, storing, processing, and analyzing Big Data in order to find the right answers needed to accomplish the mission, gain competitive advantage, and collaborate in more meaningful ways.

It is a BIG DATA world with a current volume of 1.8 zetabytes of data created per year and doubling every two years.  Technologies--cloud computing, Hadoop, MapReduce, flash array storage, business intelligence tools, etc-- are vital to an organization's ability to keep pace with Big Data.  The Big Data architecture introduces a fourth layer in the cloud computing stack.  Knowledge as a Service joins the traditional cloud layers (Infrastructure as a Service, Platform as a Service, and Software as a Service) as a focused layer dedicated to the management and analytics of Big Data including binding concepts such as pedigree, lineage, and provenance of data.  Harnessing Big Data will require a combination of technology implementations, business process changes, and workforce training to achieve breakthroughs for your organization.

What Is Big Data?
Let's start with a simple definition. McKinsey and Company define Big Data as "Datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze". Big Data can also be characterized by a series of descriptors starting with the letter V.  In the 1990s, the word "volume" emerged to describe the rapidly growing rate of data in the Internet age.  The table below, from Barbara Wixom of the University of Virginia, offers 15 different data dimensions for Big Data.  For brevity's sake, let's examine the four most common descriptors of volume, velocity, variety, and validity.

Source:  Barbara Wixom, 2012

The volume of data produced in a 24-hour period is staggering and amounts to 1.8 zetabytes per year.  Every day, 2 million blogs are posted, 172 million users visit Facebook (spending a combined 4.7 billion minutes on a single social networking site), 51 million minutes of video are uploaded, and 250 million digital photos are shared.   We continue to generate 294 billion emails each day, even though many consider email an outdated form of communication.

Perhaps more fascinating is that data velocity is accelerating.  Velocity is the speed at which data is growing and this extreme speed (1.8 zettabytes now and 3.6 zettabytes in 2013) is taxing our current information technology capabilities.  According to an IDC Digital Universe Study, we are doubling the world's information every 18 months. This trend will not slow down anytime soon.  Will we be able to manage data in our near future?  Did you know that each second of high-definition video generates two thousand times as many bytes as one single page of text?  IBM research indicates that 90 percent of the world's data has been created in the last two years alone.  Apple is selling more iPhones per day than they are babies born in the world, as noted by MBAOnline.com.    Samsung's smart phone sales are ahead of Apple sales at an estimated 41 million to 32.6 million for 2Q2012, and demonstrate the rise of additional handheld platforms contributing to the speed at which we create new data.

The third descriptor for Big Data is variety or the types of data being created.  You can generally split variety into structured and unstructured form.  The 294 billion emails per day can be considered structured text and one of the simplest forms of Big Data.  Financial transactions including movie ticket sales, gasoline sales, restaurant sales, etc., are generally structured and make up a small fraction of the data running around the global networks today. Unstructured data is a primary source of growth in variety.  Music is an ever increasing variety of data and we are streaming nearly 19 million hours of music each day over the free music service, Pandora.  Spotify, a paid streaming media service, is now the number two revenue source for music labels-second behind Apple's iTunes.  Old television shows and movies are another source of variety in the non-structured realm.  There are over 864,000 hours of video uploaded to YouTube each day.  According to MBAOnline.com, we could pipe 98 years of non-stop cat videos into everyone's home for endless hours of boredom, fun, or insanity!

The biggest challenge from a data variety perspective is harnessing the unstructured information for business relevance and data driven decisions.  We've spent decades perfecting analytic tools for structured information.  Analytic tools for unstructured data are more limited and less intuitive. Not all relevant marketing data, as an example, is confined to structured business transactions.  Tweets, Facebook posts, YouTube video, and so forth, now represent valid indicators to a business.  Corporate reputations can be improved or demolished nearly instantaneously by these new sources of data.

Validity is a singular term designed to characterize the quality, pedigree, lineage, provenance, value, integrity, setting, and context for the data.  Structured and unstructured data needs validity characterization and it should follow the data from acquisition to retirement.  Information from a trusted source is more highly valued than information from a new or casual source.  Over time, however, the new source can be further tested and validity of prior data from that source may increase or decrease.  Maintaining data heritage is more complex than meta-data tagging and requires situational awareness (i.e., context) when using the data for business decisions.

Is Cloud Computing ready for Big Data?  Is IT ready for Big Data?
Our survey respondents (notable experts in the Big Data, Cloud Computing, and IT industry) generally concurred on the need for fast, flexible IT infrastructure to support Big Data.  Anything that takes the infrastructure challenges out of the way of the business was deemed part of the critical path to success.  Tim Estes, Digital Reasoning, noted the cloud "gives you the speed you need".  Similarly, Jeff Jonas from IBM declared any infrastructure that lets you "scale up and out affordably is goodness."  Four specific areas were identified for deeper investigation as we considered if Cloud Computing and IT departments were ready for Big Data:  security; store and process; sensemaking; and stewardship.

Security
Security remains the number one obstacle to preventing IT organizations from adopting Cloud Computing.  This same AFCEA sub-committee explored security in cloud computing in a white paper released in 2011. The full white paper can be reviewed through this link.

In summary, the 2011 AFCEA white paper noted that cloud computing offers significantly improved visibility and insight that drives new cyber security solutions. Access to cloud computing services in traditional computing environments and in modern mobile environments provides numerous opportunities to gain visibility and retrieve security data points across your infrastructure, platforms, and applications.  Collecting pulse points from the high-speed networks used to connect to your cloud provides insight into threats attempting to breach the perimeter of your infrastructure.  Remote access devices and global position/location can be detected through other data points, triggering the requirement for additional security access and authorization controls while also providing real-time knowledge of the security status of end-user devices.  Constant monitoring of applications and platforms offers additional data collection points for discovering vulnerabilities in applications that can be used to infiltrate the infrastructure.  Moreover, merging measures and metrics from co-located environments or other cloud locations in your global enterprise can add yet another layer of data to the collection.

Store and Process
A May 2012 Meritalk Study called "The Big Data Gap" noted that most government IT leaders are fairly positive about the storage and processing resources needed to harness Big Data.  The study indicates the respondents currently own about half of the compute resources they actually need.  The fear is they have only about 20 percent of the capacity (in storage and processing power) needed to manage the Big Data headed their way.  Industry cloud providers have developed efficient Hadoop cloud-based architectures to handle Big Data.  Left on its own, Hadoop will very efficiently process your Big Data but will do so leaving no resources available for other work.  Experience indicates restrictions are required on Hadoop jobs to prevent Hadoop from grabbing all available storage and processing resources from the cloud.  Industry advances for storage and processing are rapidly emerging to respond to Big Data requirements.  Flash array storage is now available at enterprise-class levels from companies like Whiptail and EMC.  The InfiniBand trade association created a high performance computing input/output  fabric to deliver the internal data center speed needed for Big Data.  Gaming providers like NVidia have implemented high-speed clouds for acceleration using graphical processing units (GPU).  Moreover, global network providers continue to drive performance advances in optical and electrical equipment with a goal of keeping pace with the explosion of streaming bits and bytes.  Cisco's Global Forecast predicts global network traffic will exceed 110 Exabytes per month by 2016.  More answers and technologies are emerging each day to overcome remaining deficiencies in storage and processing capabilities for Big Data.

Sensemaking
In the world of Big Data, making sense of the data is not trivial.  The volume, velocity, variety, and validity of the data now available can create link analysis diagrams more closely resembling nature's most intricate floral design.  You would need Sheldon Cooper's Big Bang Theory eidetic memory to begin to make sense of the data...not to mention a movie theater-sized computer monitor screen!  What if your primary viewing device is a smart phone or a 5 inch tablet?   Both Gartner and Forrester predict significant increases in the use of mobile devices as Business Intelligence access platforms.

What you need are solutions that make sense of new data in time to derive new observations as the observations actually happen.  You also need solutions that allow you to make decisions fast enough to do something about the old and new observations while the transaction is still happening.  The tools must protect various slices of the complex data to ensure the user is approved to see the underlying data sources based on the provenance of each individual data element.  Advanced analytic and security tools to separate data appropriately, whether your data is in a public cloud or a private cloud, are necessary.  Commercial cloud providers are keenly focused on data and privacy protection to ensure only authorized users gain access--using technologies such as encryption, identity management, authorization services, etc.  Commercial cloud providers are accumulating very successful track records for safeguarding information.

Stewardship
The fourth challenge for the IT department is data stewardship-often considered data ownership and/or data management.  The Big Data Gap MeriTalk survey from May 2012 indicated that nearly 70 percent of respondents thought the "IT Department" had some role in owning and managing the data.  Less than 30 percent of respondents indicated the department generating the data should have these roles.  Regardless of the decision, someone has to own and manage the data.

The link between financial performance and effective data management is strengthening as companies learn to harvest Big Data.  The Economist Intelligence Unit indicates strategies for collecting and analyzing data need to rise to the C-suite level.  In essence, Big Data makes IT even more strategic to the business.  New/modified career tracks are emerging (in forward-leaning organizations) to develop employees with the skills necessary to validate data sources, define and measure pedigree and lineage of data sources, and effectively manage Big Data for an enterprise.

Winning in a Big Data World
As noted above, Big Data is complex and the challenges it presents are daunting.  In today's environment, Big Data demands phenomenal corporate balance.   Success and competitive advantage require you to focus on technologies, business processes, and people.  Your company needs:

  • New technologies for controlling Big Data;
  • Business processes designed for rapid decisions using Big Data; and
  • People trained to make smart decisions exploiting Big Data.

Technology

The Cloud Computing technology stack is evolving to handle Big Data.  Our survey revealed the need for a new, four layer stack associated with a Big Data architecture.  The Cloud stack of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) must shift to accommodate the introduction of Knowledge as a Service (KaaS) in between PaaS and SaaS.    This figure depicts the insertion of the new KaaS layer to drive Big Data results.  Without a Knowledge layer, companies end up investing heavily in customer knowledge engineering, adaptors, and connectors--essentially ending the elastic advantage of the Cloud at the IaaS layer.  This slows application development and requires human-intensive work on data maps/models and ontologies across disparate systems.  The KaaS layer pushes you into a heavily automated, algorithm-driven common knowledge layer that embraces Cloud speed and elasticity.

Innovators have embraced this KaaS idea with Google's PageRank algorithm as an example of a common index with searchable attributes capable of working across the diversity of the Web without relying on substantial amounts of manual organization. Deep insights from Big Data require semantic silos-both structured and unstructured content--to be "knowledge processed" and moved into the Cloud in order to capitalize on the business advantages opportunities of data mining.  The specific technologies to ingest and hold structured and unstructured data (as repositories) are similar with any processing differences derived from the complexity of business needs.  The repositories are living; as new data arrives, its connection to existing data will be identified and may new data may change the value of the old data to your business.  This concept of "data finding data" is the subject of IBM efforts under the direction of Jeff Jonas.  You can read more at the here.

Business Processes
In a Big Data world, companies should pay as much attention to the data as they do their other corporate assets, e.g., labor and capital.  Company goals must be clear with labor, capital, and data aligned.  Your employees should be empowered to make decisions with proper checks, balances, and audits built in.  Speed is critical and using multi-layered and lengthy paths to finalize decisions will limit your competitive advantage.  Business processes designed around lessons learned and adaptability will facilitate Big Data organizations.  Governance models and decision thresholds for employees should be clear, with escalation paths obvious and some understanding of the potential "mosaic effect" present.  The "mosaic effect" occurs when seemingly unclassified or benign data are combined together by an analyst with a resulting picture that becomes confidential or more highly classified.  Training your employees to recognize the "mosaic effect" is necessary to protect sensitive results, intellectual property, and competitive advantage.    Finally, adhering to strict data management rules (e.g., process once and use many times), will facilitate long-term Big Data utility by protecting the integrity and provenance of your corporate data.

People
The third element in your winning balance in a Big Data world is your people.  Bad decisions in today's world are more obvious and less tolerated.  Sometimes, analysis of Big Data drives a company to the wrong conclusion or decision.  Other times, Big Data can be successfully used to back up instincts with facts.  Big Data in financial institutions has become so complex, the Federal Deposit Insurance Corporation created an entire office for overseeing Complex Financial Institutions (FDIC/CFI).

Companies that successfully train their people to use Big Data wisely will reap financial and market share rewards.  Alternative analysis, critical thinking, and other analytic skills-combined with experiential learning and mentoring--will be necessary to ensure your team is seeing the right answer in the possibilities.  Thornton May's book, The New Know, highlights the requirement for companies to capitalize on data and brain power to have good knowledge of what happens next...not what happened in the past.  Generally speaking, everybody will have a Moneyball team in the future.  What's going to set your team apart?

Big Data Summary
Cloud Computing provides the technology foundation to capitalize on Big Data for corporate success.  The flexible infrastructure offered through Cloud Computing--combined with increased storage and processing power of new technologies in the Cloud-provide the rich, agile compute platform to handle the volume, variety, velocity, and validity needs of Big Data.  Insert a fourth layer into the Cloud Computing stack (Knowledge as a Service) between  PaaS and Saas to reduce human-intensive ontology work in favor of automated, algorithm-driven features designed to exploit disparate data in the Cloud.

Beyond technology, Big Data is likely to require changes in your business processes to ensure decisions with proper analytic judgment with necessary oversight operating at the right speed for competitive advantage.  Spend time training your people to analyze data from alternative points of view and to quickly accept automatically-generated observations.  People make decisions; data doesn't.  Drowning a poorly trained employee in loads of data will still produce poor decisions.

Social media, instantaneous access, and an "always connected" population of stakeholders will increasingly demand transparent accountability.  Use Big Data through Cloud Computing to demonstrate your corporate decisions are clearly backed by facts.

Sources
Cloud and Big Data Experts Surveyed

  • Zalmai Azmi, Senior Vice President, CACI International, Inc.
  • Charles Croom, Vice President, Lockheed Martin Information Technology
  • Christopher Day, Senior Vice President, Terremark Federal Group (A Verizon Company)
  • John Dvorak, Federal Bureau of Investigation
  • Tim Estes, Chairman and CEO, Digital Reasoning Systems
  • Jeff Jonas, Chief Scientist, IBM
  • Barbara Wixon, Associate Professor of Commerce, University of Virginia

Other Sources Cited and/or Used

  • How Much Data Will Humans Create & Store This Year, Josh Catone (June 28, 2011)
  • Three Big WHATs to Identify Big Data Challenges, Pearl Zhu (April 2012)
  • Bringing big data to the enterprise, IBM
  • The BIG Picture on BIG DATA, GovConExec (April 2012)
  • Big Data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute (May 2011)
  • Big Data: Harnessing a game-changing asset, The Economist Intelligence Unit (September 2011)
  • A Day in the Life of the Internet, Matt Silverman (March 06, 2012)
  • How to Be Ready for Big Data, Thor Olavsrud (March 20, 2012)
  • The Big Data Gap, Meritalk (May 7, 2012)
  • Cloudy with a Chance of Savings, Meritalk (April 25, 2012)
  • The New Know, Thornton May
  • Moneyball, Michael Lewis

More Stories By Jill Tummler Singer

Jill Tummler Singer is CIO for the National Reconnaissance Office (NRO)- which as part of the 16-member Intelligence Community plays a primary role in achieving information superiority for the U.S. Government and Armed Forces. A DoD agency, the NRO is staffed by DoD and CIA personnel. It is funded through the National Reconnaissance Program, part of the National Foreign Intelligence Program.

Prior to joining the NRO, Singer was Deputy CIO at the Central Intelligence Agency (CIA), where she was responsible for ensuring CIA had the information, technology, and infrastructure necessary to effectively execute its missions. Prior to her appointment as Deputy CIO, she served as the Director of the Diplomatic Telecommunications Service (DTS), United States Department of State, and was responsible for global network services to US foreign missions.

Singer has served in several senior leadership positions within the Federal Government. She was the head of Systems Engineering, Architecture, and Planning for CIA's global infrastructure organization. She served as the Director of Architecture and Implementation for the Intelligence Community CIO and pioneered the technology and management concepts that are the basis for multi-agency secure collaboration. She also served within CIA’s Directorate of Science and Technology.

@ThingsExpo Stories
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.
With the iCloud scandal seemingly in its past, Apple announced new iPhones, updates to iPad and MacBook as well as news on OSX Yosemite. Although consumers will have to wait to get their hands on some of that new stuff, what they can get is the latest release of iOS 8 that Apple made available for most in-market iPhones and iPads. Originally announced at WWDC (Apple’s annual developers conference) in June, iOS 8 seems to spearhead Apple’s newfound focus upon greater integration of their products into everyday tasks, cross-platform mobility and self-monitoring. Before you update your device, here is a look at some of the new features and things you may want to consider from a mobile security perspective.