Microservices Expo Authors: Elizabeth White, Mehdi Daoudi, Pat Romanski, Flint Brenton, Gordon Haff

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Cloud Security, Government Cloud

@CloudExpo: Article

The Intersection of Big Data and Cloud Computing

Looking for the Right Answers in the Clouds

Everyone's talking about Big Data today. Is Big Data a buzz word, real phenomenon, or next evolution in our world? In this AFCEA white paper, we surveyed many notable experts to gain perspectives on Big Data.  This paper serves as a primer on Big Data characteristics and provides insights into technology challenges and solutions.  The intent is to help federal agencies, companies, and communities develop new solutions for consuming, storing, processing, and analyzing Big Data in order to find the right answers needed to accomplish the mission, gain competitive advantage, and collaborate in more meaningful ways.

It is a BIG DATA world with a current volume of 1.8 zetabytes of data created per year and doubling every two years.  Technologies--cloud computing, Hadoop, MapReduce, flash array storage, business intelligence tools, etc-- are vital to an organization's ability to keep pace with Big Data.  The Big Data architecture introduces a fourth layer in the cloud computing stack.  Knowledge as a Service joins the traditional cloud layers (Infrastructure as a Service, Platform as a Service, and Software as a Service) as a focused layer dedicated to the management and analytics of Big Data including binding concepts such as pedigree, lineage, and provenance of data.  Harnessing Big Data will require a combination of technology implementations, business process changes, and workforce training to achieve breakthroughs for your organization.

What Is Big Data?
Let's start with a simple definition. McKinsey and Company define Big Data as "Datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze". Big Data can also be characterized by a series of descriptors starting with the letter V.  In the 1990s, the word "volume" emerged to describe the rapidly growing rate of data in the Internet age.  The table below, from Barbara Wixom of the University of Virginia, offers 15 different data dimensions for Big Data.  For brevity's sake, let's examine the four most common descriptors of volume, velocity, variety, and validity.

Source:  Barbara Wixom, 2012

The volume of data produced in a 24-hour period is staggering and amounts to 1.8 zetabytes per year.  Every day, 2 million blogs are posted, 172 million users visit Facebook (spending a combined 4.7 billion minutes on a single social networking site), 51 million minutes of video are uploaded, and 250 million digital photos are shared.   We continue to generate 294 billion emails each day, even though many consider email an outdated form of communication.

Perhaps more fascinating is that data velocity is accelerating.  Velocity is the speed at which data is growing and this extreme speed (1.8 zettabytes now and 3.6 zettabytes in 2013) is taxing our current information technology capabilities.  According to an IDC Digital Universe Study, we are doubling the world's information every 18 months. This trend will not slow down anytime soon.  Will we be able to manage data in our near future?  Did you know that each second of high-definition video generates two thousand times as many bytes as one single page of text?  IBM research indicates that 90 percent of the world's data has been created in the last two years alone.  Apple is selling more iPhones per day than they are babies born in the world, as noted by MBAOnline.com.    Samsung's smart phone sales are ahead of Apple sales at an estimated 41 million to 32.6 million for 2Q2012, and demonstrate the rise of additional handheld platforms contributing to the speed at which we create new data.

The third descriptor for Big Data is variety or the types of data being created.  You can generally split variety into structured and unstructured form.  The 294 billion emails per day can be considered structured text and one of the simplest forms of Big Data.  Financial transactions including movie ticket sales, gasoline sales, restaurant sales, etc., are generally structured and make up a small fraction of the data running around the global networks today. Unstructured data is a primary source of growth in variety.  Music is an ever increasing variety of data and we are streaming nearly 19 million hours of music each day over the free music service, Pandora.  Spotify, a paid streaming media service, is now the number two revenue source for music labels-second behind Apple's iTunes.  Old television shows and movies are another source of variety in the non-structured realm.  There are over 864,000 hours of video uploaded to YouTube each day.  According to MBAOnline.com, we could pipe 98 years of non-stop cat videos into everyone's home for endless hours of boredom, fun, or insanity!

The biggest challenge from a data variety perspective is harnessing the unstructured information for business relevance and data driven decisions.  We've spent decades perfecting analytic tools for structured information.  Analytic tools for unstructured data are more limited and less intuitive. Not all relevant marketing data, as an example, is confined to structured business transactions.  Tweets, Facebook posts, YouTube video, and so forth, now represent valid indicators to a business.  Corporate reputations can be improved or demolished nearly instantaneously by these new sources of data.

Validity is a singular term designed to characterize the quality, pedigree, lineage, provenance, value, integrity, setting, and context for the data.  Structured and unstructured data needs validity characterization and it should follow the data from acquisition to retirement.  Information from a trusted source is more highly valued than information from a new or casual source.  Over time, however, the new source can be further tested and validity of prior data from that source may increase or decrease.  Maintaining data heritage is more complex than meta-data tagging and requires situational awareness (i.e., context) when using the data for business decisions.

Is Cloud Computing ready for Big Data?  Is IT ready for Big Data?
Our survey respondents (notable experts in the Big Data, Cloud Computing, and IT industry) generally concurred on the need for fast, flexible IT infrastructure to support Big Data.  Anything that takes the infrastructure challenges out of the way of the business was deemed part of the critical path to success.  Tim Estes, Digital Reasoning, noted the cloud "gives you the speed you need".  Similarly, Jeff Jonas from IBM declared any infrastructure that lets you "scale up and out affordably is goodness."  Four specific areas were identified for deeper investigation as we considered if Cloud Computing and IT departments were ready for Big Data:  security; store and process; sensemaking; and stewardship.

Security remains the number one obstacle to preventing IT organizations from adopting Cloud Computing.  This same AFCEA sub-committee explored security in cloud computing in a white paper released in 2011. The full white paper can be reviewed through this link.

In summary, the 2011 AFCEA white paper noted that cloud computing offers significantly improved visibility and insight that drives new cyber security solutions. Access to cloud computing services in traditional computing environments and in modern mobile environments provides numerous opportunities to gain visibility and retrieve security data points across your infrastructure, platforms, and applications.  Collecting pulse points from the high-speed networks used to connect to your cloud provides insight into threats attempting to breach the perimeter of your infrastructure.  Remote access devices and global position/location can be detected through other data points, triggering the requirement for additional security access and authorization controls while also providing real-time knowledge of the security status of end-user devices.  Constant monitoring of applications and platforms offers additional data collection points for discovering vulnerabilities in applications that can be used to infiltrate the infrastructure.  Moreover, merging measures and metrics from co-located environments or other cloud locations in your global enterprise can add yet another layer of data to the collection.

Store and Process
A May 2012 Meritalk Study called "The Big Data Gap" noted that most government IT leaders are fairly positive about the storage and processing resources needed to harness Big Data.  The study indicates the respondents currently own about half of the compute resources they actually need.  The fear is they have only about 20 percent of the capacity (in storage and processing power) needed to manage the Big Data headed their way.  Industry cloud providers have developed efficient Hadoop cloud-based architectures to handle Big Data.  Left on its own, Hadoop will very efficiently process your Big Data but will do so leaving no resources available for other work.  Experience indicates restrictions are required on Hadoop jobs to prevent Hadoop from grabbing all available storage and processing resources from the cloud.  Industry advances for storage and processing are rapidly emerging to respond to Big Data requirements.  Flash array storage is now available at enterprise-class levels from companies like Whiptail and EMC.  The InfiniBand trade association created a high performance computing input/output  fabric to deliver the internal data center speed needed for Big Data.  Gaming providers like NVidia have implemented high-speed clouds for acceleration using graphical processing units (GPU).  Moreover, global network providers continue to drive performance advances in optical and electrical equipment with a goal of keeping pace with the explosion of streaming bits and bytes.  Cisco's Global Forecast predicts global network traffic will exceed 110 Exabytes per month by 2016.  More answers and technologies are emerging each day to overcome remaining deficiencies in storage and processing capabilities for Big Data.

In the world of Big Data, making sense of the data is not trivial.  The volume, velocity, variety, and validity of the data now available can create link analysis diagrams more closely resembling nature's most intricate floral design.  You would need Sheldon Cooper's Big Bang Theory eidetic memory to begin to make sense of the data...not to mention a movie theater-sized computer monitor screen!  What if your primary viewing device is a smart phone or a 5 inch tablet?   Both Gartner and Forrester predict significant increases in the use of mobile devices as Business Intelligence access platforms.

What you need are solutions that make sense of new data in time to derive new observations as the observations actually happen.  You also need solutions that allow you to make decisions fast enough to do something about the old and new observations while the transaction is still happening.  The tools must protect various slices of the complex data to ensure the user is approved to see the underlying data sources based on the provenance of each individual data element.  Advanced analytic and security tools to separate data appropriately, whether your data is in a public cloud or a private cloud, are necessary.  Commercial cloud providers are keenly focused on data and privacy protection to ensure only authorized users gain access--using technologies such as encryption, identity management, authorization services, etc.  Commercial cloud providers are accumulating very successful track records for safeguarding information.

The fourth challenge for the IT department is data stewardship-often considered data ownership and/or data management.  The Big Data Gap MeriTalk survey from May 2012 indicated that nearly 70 percent of respondents thought the "IT Department" had some role in owning and managing the data.  Less than 30 percent of respondents indicated the department generating the data should have these roles.  Regardless of the decision, someone has to own and manage the data.

The link between financial performance and effective data management is strengthening as companies learn to harvest Big Data.  The Economist Intelligence Unit indicates strategies for collecting and analyzing data need to rise to the C-suite level.  In essence, Big Data makes IT even more strategic to the business.  New/modified career tracks are emerging (in forward-leaning organizations) to develop employees with the skills necessary to validate data sources, define and measure pedigree and lineage of data sources, and effectively manage Big Data for an enterprise.

Winning in a Big Data World
As noted above, Big Data is complex and the challenges it presents are daunting.  In today's environment, Big Data demands phenomenal corporate balance.   Success and competitive advantage require you to focus on technologies, business processes, and people.  Your company needs:

  • New technologies for controlling Big Data;
  • Business processes designed for rapid decisions using Big Data; and
  • People trained to make smart decisions exploiting Big Data.


The Cloud Computing technology stack is evolving to handle Big Data.  Our survey revealed the need for a new, four layer stack associated with a Big Data architecture.  The Cloud stack of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) must shift to accommodate the introduction of Knowledge as a Service (KaaS) in between PaaS and SaaS.    This figure depicts the insertion of the new KaaS layer to drive Big Data results.  Without a Knowledge layer, companies end up investing heavily in customer knowledge engineering, adaptors, and connectors--essentially ending the elastic advantage of the Cloud at the IaaS layer.  This slows application development and requires human-intensive work on data maps/models and ontologies across disparate systems.  The KaaS layer pushes you into a heavily automated, algorithm-driven common knowledge layer that embraces Cloud speed and elasticity.

Innovators have embraced this KaaS idea with Google's PageRank algorithm as an example of a common index with searchable attributes capable of working across the diversity of the Web without relying on substantial amounts of manual organization. Deep insights from Big Data require semantic silos-both structured and unstructured content--to be "knowledge processed" and moved into the Cloud in order to capitalize on the business advantages opportunities of data mining.  The specific technologies to ingest and hold structured and unstructured data (as repositories) are similar with any processing differences derived from the complexity of business needs.  The repositories are living; as new data arrives, its connection to existing data will be identified and may new data may change the value of the old data to your business.  This concept of "data finding data" is the subject of IBM efforts under the direction of Jeff Jonas.  You can read more at the here.

Business Processes
In a Big Data world, companies should pay as much attention to the data as they do their other corporate assets, e.g., labor and capital.  Company goals must be clear with labor, capital, and data aligned.  Your employees should be empowered to make decisions with proper checks, balances, and audits built in.  Speed is critical and using multi-layered and lengthy paths to finalize decisions will limit your competitive advantage.  Business processes designed around lessons learned and adaptability will facilitate Big Data organizations.  Governance models and decision thresholds for employees should be clear, with escalation paths obvious and some understanding of the potential "mosaic effect" present.  The "mosaic effect" occurs when seemingly unclassified or benign data are combined together by an analyst with a resulting picture that becomes confidential or more highly classified.  Training your employees to recognize the "mosaic effect" is necessary to protect sensitive results, intellectual property, and competitive advantage.    Finally, adhering to strict data management rules (e.g., process once and use many times), will facilitate long-term Big Data utility by protecting the integrity and provenance of your corporate data.

The third element in your winning balance in a Big Data world is your people.  Bad decisions in today's world are more obvious and less tolerated.  Sometimes, analysis of Big Data drives a company to the wrong conclusion or decision.  Other times, Big Data can be successfully used to back up instincts with facts.  Big Data in financial institutions has become so complex, the Federal Deposit Insurance Corporation created an entire office for overseeing Complex Financial Institutions (FDIC/CFI).

Companies that successfully train their people to use Big Data wisely will reap financial and market share rewards.  Alternative analysis, critical thinking, and other analytic skills-combined with experiential learning and mentoring--will be necessary to ensure your team is seeing the right answer in the possibilities.  Thornton May's book, The New Know, highlights the requirement for companies to capitalize on data and brain power to have good knowledge of what happens next...not what happened in the past.  Generally speaking, everybody will have a Moneyball team in the future.  What's going to set your team apart?

Big Data Summary
Cloud Computing provides the technology foundation to capitalize on Big Data for corporate success.  The flexible infrastructure offered through Cloud Computing--combined with increased storage and processing power of new technologies in the Cloud-provide the rich, agile compute platform to handle the volume, variety, velocity, and validity needs of Big Data.  Insert a fourth layer into the Cloud Computing stack (Knowledge as a Service) between  PaaS and Saas to reduce human-intensive ontology work in favor of automated, algorithm-driven features designed to exploit disparate data in the Cloud.

Beyond technology, Big Data is likely to require changes in your business processes to ensure decisions with proper analytic judgment with necessary oversight operating at the right speed for competitive advantage.  Spend time training your people to analyze data from alternative points of view and to quickly accept automatically-generated observations.  People make decisions; data doesn't.  Drowning a poorly trained employee in loads of data will still produce poor decisions.

Social media, instantaneous access, and an "always connected" population of stakeholders will increasingly demand transparent accountability.  Use Big Data through Cloud Computing to demonstrate your corporate decisions are clearly backed by facts.

Cloud and Big Data Experts Surveyed

  • Zalmai Azmi, Senior Vice President, CACI International, Inc.
  • Charles Croom, Vice President, Lockheed Martin Information Technology
  • Christopher Day, Senior Vice President, Terremark Federal Group (A Verizon Company)
  • John Dvorak, Federal Bureau of Investigation
  • Tim Estes, Chairman and CEO, Digital Reasoning Systems
  • Jeff Jonas, Chief Scientist, IBM
  • Barbara Wixon, Associate Professor of Commerce, University of Virginia

Other Sources Cited and/or Used

  • How Much Data Will Humans Create & Store This Year, Josh Catone (June 28, 2011)
  • Three Big WHATs to Identify Big Data Challenges, Pearl Zhu (April 2012)
  • Bringing big data to the enterprise, IBM
  • The BIG Picture on BIG DATA, GovConExec (April 2012)
  • Big Data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute (May 2011)
  • Big Data: Harnessing a game-changing asset, The Economist Intelligence Unit (September 2011)
  • A Day in the Life of the Internet, Matt Silverman (March 06, 2012)
  • How to Be Ready for Big Data, Thor Olavsrud (March 20, 2012)
  • The Big Data Gap, Meritalk (May 7, 2012)
  • Cloudy with a Chance of Savings, Meritalk (April 25, 2012)
  • The New Know, Thornton May
  • Moneyball, Michael Lewis

More Stories By Jill Tummler Singer

Jill Tummler Singer is CIO for the National Reconnaissance Office (NRO)- which as part of the 16-member Intelligence Community plays a primary role in achieving information superiority for the U.S. Government and Armed Forces. A DoD agency, the NRO is staffed by DoD and CIA personnel. It is funded through the National Reconnaissance Program, part of the National Foreign Intelligence Program.

Prior to joining the NRO, Singer was Deputy CIO at the Central Intelligence Agency (CIA), where she was responsible for ensuring CIA had the information, technology, and infrastructure necessary to effectively execute its missions. Prior to her appointment as Deputy CIO, she served as the Director of the Diplomatic Telecommunications Service (DTS), United States Department of State, and was responsible for global network services to US foreign missions.

Singer has served in several senior leadership positions within the Federal Government. She was the head of Systems Engineering, Architecture, and Planning for CIA's global infrastructure organization. She served as the Director of Architecture and Implementation for the Intelligence Community CIO and pioneered the technology and management concepts that are the basis for multi-agency secure collaboration. She also served within CIA’s Directorate of Science and Technology.

@MicroservicesExpo Stories
"We started a Master of Science in business analytics - that's the hot topic. We serve the business community around San Francisco so we educate the working professionals and this is where they all want to be," explained Judy Lee, Associate Professor and Department Chair at Golden Gate University, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
The general concepts of DevOps have played a central role advancing the modern software delivery industry. With the library of DevOps best practices, tips and guides expanding quickly, it can be difficult to track down the best and most accurate resources and information. In order to help the software development community, and to further our own learning, we reached out to leading industry analysts and asked them about an increasingly popular tenet of a DevOps transformation: collaboration.
We call it DevOps but much of the time there’s a lot more discussion about the needs and concerns of developers than there is about other groups. There’s a focus on improved and less isolated developer workflows. There are many discussions around collaboration, continuous integration and delivery, issue tracking, source code control, code review, IDEs, and xPaaS – and all the tools that enable those things. Changes in developer practices may come up – such as developers taking ownership of code ...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"We are an integrator of carrier ethernet and bandwidth to get people to connect to the cloud, to the SaaS providers, and the IaaS providers all on ethernet," explained Paul Mako, CEO & CTO of Massive Networks, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
With continuous delivery (CD) almost always in the spotlight, continuous integration (CI) is often left out in the cold. Indeed, it's been in use for so long and so widely, we often take the model for granted. So what is CI and how can you make the most of it? This blog is intended to answer those questions. Before we step into examining CI, we need to look back. Software developers often work in small teams and modularity, and need to integrate their changes with the rest of the project code b...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...