Welcome!

Microservices Expo Authors: Matt Brickey, Elizabeth White, Christoph Schell, Pat Romanski, Liz McMillan

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Release Management , Cloud Security

@CloudExpo: Article

Lessons Learned from Real-World Big Data Implementations

The value of Big Data is in the insights that the data can provide

In the past few weeks I visited several Cloud and Big Data conferences that provided me with a lot of insight. Some people only consider the technology side of Big Data technologies like Hadoop or Cassandra. The real driver however is a different one. Business analysts have discovered Big Data technologies as a way to leverage tons of existing data and ask questions about customer behavior and all sorts relationships to drive business strategy. By doing that they are pushing their IT departments to run ever bigger Hadoop environments and ever faster real-time systems.

What's interesting from a technical side is that ad-hoc analytics on existing data is allowed to take some time. However ad-hoc implies people waiting for an answer, meaning we are talking about minutes and not hours. Another interesting insight is that Hadoop environments are never static or standalone. Most companies take in new data on a continuous basis via technologies like flume. This means Hadoop MapReduce jobs need to be able to keep up with the data flow, either by adding more hardware or by optimizing them.

There are multiple drivers to Big Data (actually there are a lot) but the two most important ones are these: Analytics and Technical Need for Speed. Let's look at some of those and the resulting takeaways.

The Value Is in the Insight Not the Volume
The value of Big Data is in the insights that the data can provide, not the sheer volume of it. The reason that more and more companies are keeping all of their log and transaction data is that they want to gain those insights. The sheer size of the data is rather an obstacle to this goal and has been for a long time. With Big Data technologies this value can be harnessed.

Don't Forget That Data Analysts Are People Too
Ad-hoc analytics doesn't have to be instant, but must not take hours either. It was interesting to see that time to result on ad-hoc analytics is considered important. This is because people are doing those queries, and people don't like to wait for hours. But even more important is that business analytics is often an iterative process. Ask a question, check the answer, refine or change the question. Hours long MapReduce jobs are prohibitive to this process.

New Data Is Coming in All the Time
Big Data environments are constantly fed new data. This is not really big news, but I was still surprised by the constant reiteration of this fact. The constant data growth means that ad-hoc queries get either slower over time or need to work on samples. To remedy this, companies are writing, scrubbing and categorizing MapReduce jobs. These jobs basically strip out all the unimportant stuff and put cleansed, streamline easy-to-access data into new files. Instead of executing analytics against raw files, the analyst works on a cleansed data set. The implications are that scrubbing jobs need to be maintained all the time (as data input is changing over time) and they need to be able to keep up with the velocity of the input. MapReduce is not allowed to run for hours, but needs to be quick and iterative.

Big Data Is Not Cheap
While it sounds obvious, it's something that's not talked about by the vendors unless specifically asked. Hadoop requires a lot of hardware and a lot of expertise. Especially the expertise is hard to come by as of yet. While hardware might be cheap (you don't need expensive boxes for Hadoop) the bigger the environment the higher the operational costs. That operational cost is the reason some Hadoop vendors exist on services alone and also why customers are demanding better monitoring and management solutions.

Data Must Be Accessible at Low Latencies to Provide Value
One very interesting fact is that most early adopters that use Hadoop for analytics use it for ad-hoc analytics and not as a traditional warehouse. They use MapReduce to do the heavy lifting that is usually reserved for ETL jobs and put the resulting dimensions in existing data warehouses or into a NoSQL solution like HBase, Cassandra or MongoDB. These solutions provide low latency access semantics and are then integrated in the transactional application world, e.g. to provide recommendations to the end users.

This does not absolve them from optimizing their Hadoop environment where they can, but it gives them the much needed real time access that Hadoop so far does not provide. This also makes for additional complexity that needs to be maintained and monitored.

NoSQL Solutions Need Management and Monitoring as Well
NoSQL solutions are most often used to provide low latency databases with failover and horizontal scaling characteristics. As expected, practitioners quickly run into new issues like distribution and wrong access patterns. Most NoSQL solutions lack sophisticated monitoring or performance analysis tools and require experts instead. Fortunately several companies are working on providing those tools and some APM vendors work hard to support NoSQL databases similar to normal databases. This is emphasized by another interesting finding: With a fast and scalable data storage, the application itself quickly becomes the response time and scaling bottleneck.

Applications Using NoSQL Technologies Are More Complex
Most NoSQL solutions surrender more complex logic like joins in order to achieve horizontally scalable data distribution. That logic is moved to the application - arguably this is where it should be anyway. NoSQL solutions require data to be stored in a query access optimized way - de-normalization is the key. The flip side of storing data multiple times and the need to keep it in sync on updates, is that the storage logic again becomes more complex. More application logic usually means less performance.

My conclusion as a performance engineer is relatively clear: Big Data requires Performance Management and Monitoring Tools to fulfill its promise in a cost effective and timely manner. Here are some suggestions on what you should think about when you start a Big Data project.

  1. Large Hadoop environments are hard to manage and operate. Without automation in terms of deployment, operations, monitoring and root cause analysis they quickly become unmanageable. Make sure to have a monitoring solution in place that informs you pro-actively of any infrastructure or software issues that would affect your operation. It needs to give you an easy way to pinpoint the root cause.
  2. The easiest way to identify new performance issues is to detect and analyze change. Adopt a life cycle and 24/7 production APM approach. It will enable you to notice changes in data and compute distribution over time. In addition a life cycle approach will allow you to immediately pin point any negative changes introduced by a new software release.
  3. Don't just throw more and more hardware at the problem. While you can use cheaper hardware for Hadoop, it's still cost. But more than that you have to consider the operational drag. Every node you add will make traditional log based analysis more complicated. Instead ensure that you have an APM solution in place that lets you understand and optimize MapReduce jobs at their core and reduce both the time and resources it takes to run them.
  4. Your Hadoop cluster is no island, but will always be connected in some form or the other to a real time or at least transactional system. Make sure that you have a monitoring solution in place that can support both.

NoSQL applications tend to have more complex logic. The very performance and scalability of the store depends on correct data access and data distribution. An good monitoring solution allows you to monitor and optimize that additional complexity with ease; it also enables you to understand how your application access the data and how that access is distributed across your NoSQL cluster in your production system. The best way to ensure a scalable and fast NoSQL store is to ensure optimal distribution and access patterns.

Conclusion
Big Data is still very much an emerging technology and its promises are huge. But in order to deliver on those promises it must be cost and time effective to those that harness its value - The Business and not just technology experts.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
From personal care products to groceries and movies on demand, cloud-based subscriptions are fulfilling the needs of consumers across an array of market sectors. Nowhere is this shift to subscription services more evident than in the technology sector. By adopting an Everything-as-a-Service (XaaS) delivery model, companies are able to tailor their computing environments to shape the experiences they want for customers as well as their workforce.
If you read a lot of business and technology publications, you might think public clouds are universally preferred over all other cloud options. To be sure, the numbers posted by Amazon Web Services (AWS) and Microsoft’s Azure platform are nothing short of impressive. Statistics reveal that public clouds are growing faster than private clouds and analysts at IDC predict that public cloud growth will be 3 times that of private clouds by 2019.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"DivvyCloud as a company set out to help customers automate solutions to the most common cloud problems," noted Jeremy Snyder, VP of Business Development at DivvyCloud, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"We focus on SAP workloads because they are among the most powerful but somewhat challenging workloads out there to take into public cloud," explained Swen Conrad, CEO of Ocean9, Inc., in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"As we've gone out into the public cloud we've seen that over time we may have lost a few things - we've lost control, we've given up cost to a certain extent, and then security, flexibility," explained Steve Conner, VP of Sales at Cloudistics,in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Peak 10 is a hybrid infrastructure provider across the nation. We are in the thick of things when it comes to hybrid IT," explained , Chief Technology Officer at Peak 10, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I think DevOps is now a rambunctious teenager – it’s starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I will be talking about ChatOps and ChatOps as a way to solve some problems in the DevOps space," explained Himanshu Chhetri, CTO of Addteq, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Your homes and cars can be automated and self-serviced. Why can't your storage? From simply asking questions to analyze and troubleshoot your infrastructure, to provisioning storage with snapshots, recovery and replication, your wildest sci-fi dream has come true. In his session at @DevOpsSummit at 20th Cloud Expo, Dan Florea, Director of Product Management at Tintri, provided a ChatOps demo where you can talk to your storage and manage it from anywhere, through Slack and similar services with...
If you are thinking about moving applications off a mainframe and over to open systems and the cloud, consider these guidelines to prioritize what to move and what to eliminate. On the surface, mainframe architecture seems relatively simple: A centrally located computer processes data through an input/output subsystem and stores its computations in memory. At the other end of the mainframe are printers and terminals that communicate with the mainframe through protocols. For all of its apparen...
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
Data reduction delivers compelling cost reduction that substantially improves the business case in every cloud deployment model. No matter which cloud approach you choose, the cost savings benefits from data reduction should not be ignored and must be a component of your cloud strategy. IT professionals are finding that the future of IT infrastructure lies in the cloud. Data reduction technologies enable clouds — public, private, and hybrid — to deliver business agility and elasticity at the lo...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Five years ago development was seen as a dead-end career, now it’s anything but – with an explosion in mobile and IoT initiatives increasing the demand for skilled engineers. But apart from having a ready supply of great coders, what constitutes true ‘DevOps Royalty’? It’ll be the ability to craft resilient architectures, supportability, security everywhere across the software lifecycle. In his keynote at @DevOpsSummit at 20th Cloud Expo, Jeffrey Scheaffer, GM and SVP, Continuous Delivery Busine...
"We do one of the best file systems in the world. We learned how to deal with Big Data many years ago and we implemented this knowledge into our software," explained Jakub Ratajczak, Business Development Manager at MooseFS, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.