Click here to close now.

Welcome!

Microservices Expo Blog Authors: Carmen Gonzalez, Elizabeth White, Lori MacVittie, Pat Romanski, Liz McMillan

Related Topics: @CloudExpo, Microservices Expo Blog, Containers Expo Blog, Agile Computing, Release Management , Cloud Security

@CloudExpo: Article

Lessons Learned from Real-World Big Data Implementations

The value of Big Data is in the insights that the data can provide

In the past few weeks I visited several Cloud and Big Data conferences that provided me with a lot of insight. Some people only consider the technology side of Big Data technologies like Hadoop or Cassandra. The real driver however is a different one. Business analysts have discovered Big Data technologies as a way to leverage tons of existing data and ask questions about customer behavior and all sorts relationships to drive business strategy. By doing that they are pushing their IT departments to run ever bigger Hadoop environments and ever faster real-time systems.

What's interesting from a technical side is that ad-hoc analytics on existing data is allowed to take some time. However ad-hoc implies people waiting for an answer, meaning we are talking about minutes and not hours. Another interesting insight is that Hadoop environments are never static or standalone. Most companies take in new data on a continuous basis via technologies like flume. This means Hadoop MapReduce jobs need to be able to keep up with the data flow, either by adding more hardware or by optimizing them.

There are multiple drivers to Big Data (actually there are a lot) but the two most important ones are these: Analytics and Technical Need for Speed. Let's look at some of those and the resulting takeaways.

The Value Is in the Insight Not the Volume
The value of Big Data is in the insights that the data can provide, not the sheer volume of it. The reason that more and more companies are keeping all of their log and transaction data is that they want to gain those insights. The sheer size of the data is rather an obstacle to this goal and has been for a long time. With Big Data technologies this value can be harnessed.

Don't Forget That Data Analysts Are People Too
Ad-hoc analytics doesn't have to be instant, but must not take hours either. It was interesting to see that time to result on ad-hoc analytics is considered important. This is because people are doing those queries, and people don't like to wait for hours. But even more important is that business analytics is often an iterative process. Ask a question, check the answer, refine or change the question. Hours long MapReduce jobs are prohibitive to this process.

New Data Is Coming in All the Time
Big Data environments are constantly fed new data. This is not really big news, but I was still surprised by the constant reiteration of this fact. The constant data growth means that ad-hoc queries get either slower over time or need to work on samples. To remedy this, companies are writing, scrubbing and categorizing MapReduce jobs. These jobs basically strip out all the unimportant stuff and put cleansed, streamline easy-to-access data into new files. Instead of executing analytics against raw files, the analyst works on a cleansed data set. The implications are that scrubbing jobs need to be maintained all the time (as data input is changing over time) and they need to be able to keep up with the velocity of the input. MapReduce is not allowed to run for hours, but needs to be quick and iterative.

Big Data Is Not Cheap
While it sounds obvious, it's something that's not talked about by the vendors unless specifically asked. Hadoop requires a lot of hardware and a lot of expertise. Especially the expertise is hard to come by as of yet. While hardware might be cheap (you don't need expensive boxes for Hadoop) the bigger the environment the higher the operational costs. That operational cost is the reason some Hadoop vendors exist on services alone and also why customers are demanding better monitoring and management solutions.

Data Must Be Accessible at Low Latencies to Provide Value
One very interesting fact is that most early adopters that use Hadoop for analytics use it for ad-hoc analytics and not as a traditional warehouse. They use MapReduce to do the heavy lifting that is usually reserved for ETL jobs and put the resulting dimensions in existing data warehouses or into a NoSQL solution like HBase, Cassandra or MongoDB. These solutions provide low latency access semantics and are then integrated in the transactional application world, e.g. to provide recommendations to the end users.

This does not absolve them from optimizing their Hadoop environment where they can, but it gives them the much needed real time access that Hadoop so far does not provide. This also makes for additional complexity that needs to be maintained and monitored.

NoSQL Solutions Need Management and Monitoring as Well
NoSQL solutions are most often used to provide low latency databases with failover and horizontal scaling characteristics. As expected, practitioners quickly run into new issues like distribution and wrong access patterns. Most NoSQL solutions lack sophisticated monitoring or performance analysis tools and require experts instead. Fortunately several companies are working on providing those tools and some APM vendors work hard to support NoSQL databases similar to normal databases. This is emphasized by another interesting finding: With a fast and scalable data storage, the application itself quickly becomes the response time and scaling bottleneck.

Applications Using NoSQL Technologies Are More Complex
Most NoSQL solutions surrender more complex logic like joins in order to achieve horizontally scalable data distribution. That logic is moved to the application - arguably this is where it should be anyway. NoSQL solutions require data to be stored in a query access optimized way - de-normalization is the key. The flip side of storing data multiple times and the need to keep it in sync on updates, is that the storage logic again becomes more complex. More application logic usually means less performance.

My conclusion as a performance engineer is relatively clear: Big Data requires Performance Management and Monitoring Tools to fulfill its promise in a cost effective and timely manner. Here are some suggestions on what you should think about when you start a Big Data project.

  1. Large Hadoop environments are hard to manage and operate. Without automation in terms of deployment, operations, monitoring and root cause analysis they quickly become unmanageable. Make sure to have a monitoring solution in place that informs you pro-actively of any infrastructure or software issues that would affect your operation. It needs to give you an easy way to pinpoint the root cause.
  2. The easiest way to identify new performance issues is to detect and analyze change. Adopt a life cycle and 24/7 production APM approach. It will enable you to notice changes in data and compute distribution over time. In addition a life cycle approach will allow you to immediately pin point any negative changes introduced by a new software release.
  3. Don't just throw more and more hardware at the problem. While you can use cheaper hardware for Hadoop, it's still cost. But more than that you have to consider the operational drag. Every node you add will make traditional log based analysis more complicated. Instead ensure that you have an APM solution in place that lets you understand and optimize MapReduce jobs at their core and reduce both the time and resources it takes to run them.
  4. Your Hadoop cluster is no island, but will always be connected in some form or the other to a real time or at least transactional system. Make sure that you have a monitoring solution in place that can support both.

NoSQL applications tend to have more complex logic. The very performance and scalability of the store depends on correct data access and data distribution. An good monitoring solution allows you to monitor and optimize that additional complexity with ease; it also enables you to understand how your application access the data and how that access is distributed across your NoSQL cluster in your production system. The best way to ensure a scalable and fast NoSQL store is to ensure optimal distribution and access patterns.

Conclusion
Big Data is still very much an emerging technology and its promises are huge. But in order to deliver on those promises it must be cost and time effective to those that harness its value - The Business and not just technology experts.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
DevOps Summit, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding bu...
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the ...
The most often asked question post-DevOps introduction is: “How do I get started?” There’s plenty of information on why DevOps is valid and important, but many managers still struggle with simple basics for how to initiate a DevOps program in their business. They struggle with issues related to current organizational inertia, the lack of experience on Continuous Integration/Delivery, understanding where DevOps will affect revenue and budget, etc. In their session at DevOps Summit, JP Morgenthal...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises ar...
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction. ...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
Manufacturing has widely adopted standardized and automated processes to create designs, build them, and maintain them through their life cycle. However, many modern manufacturing systems go beyond mechanized workflows to introduce empowered workers, flexible collaboration, and rapid iteration. Such behaviors also characterize open source software development and are at the heart of DevOps culture, processes, and tooling.
SYS-CON Events announced today that JFrog, maker of Artifactory, the popular Binary Repository Manager, will exhibit at SYS-CON's @DevOpsSummit Silicon Valley, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Based in California, Israel and France, founded by longtime field-experts, JFrog, creator of Artifactory and Bintray, has provided the market with the first Binary Repository solution and a software distribution social platform.
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at DevOps Summit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
Summer is finally here and it’s time for a DevOps summer vacation. From San Francisco to New York City, our top summer conferences list is going to continuously deliver you to the summer destinations of your dreams. These DevOps parties are hitting all the hottest summer trends with Microservices, Agile, Continuous Delivery, DevSecOps, and even Continuous Testing. Move over Kanye. These are the top 5 Summer DevOps Conferences of 2015.
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...