Welcome!

Microservices Expo Authors: Elizabeth White, Liz McMillan, Derek Weeks, Pat Romanski, Karthick Viswanathan

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Release Management , Cloud Security

@CloudExpo: Article

Lessons Learned from Real-World Big Data Implementations

The value of Big Data is in the insights that the data can provide

In the past few weeks I visited several Cloud and Big Data conferences that provided me with a lot of insight. Some people only consider the technology side of Big Data technologies like Hadoop or Cassandra. The real driver however is a different one. Business analysts have discovered Big Data technologies as a way to leverage tons of existing data and ask questions about customer behavior and all sorts relationships to drive business strategy. By doing that they are pushing their IT departments to run ever bigger Hadoop environments and ever faster real-time systems.

What's interesting from a technical side is that ad-hoc analytics on existing data is allowed to take some time. However ad-hoc implies people waiting for an answer, meaning we are talking about minutes and not hours. Another interesting insight is that Hadoop environments are never static or standalone. Most companies take in new data on a continuous basis via technologies like flume. This means Hadoop MapReduce jobs need to be able to keep up with the data flow, either by adding more hardware or by optimizing them.

There are multiple drivers to Big Data (actually there are a lot) but the two most important ones are these: Analytics and Technical Need for Speed. Let's look at some of those and the resulting takeaways.

The Value Is in the Insight Not the Volume
The value of Big Data is in the insights that the data can provide, not the sheer volume of it. The reason that more and more companies are keeping all of their log and transaction data is that they want to gain those insights. The sheer size of the data is rather an obstacle to this goal and has been for a long time. With Big Data technologies this value can be harnessed.

Don't Forget That Data Analysts Are People Too
Ad-hoc analytics doesn't have to be instant, but must not take hours either. It was interesting to see that time to result on ad-hoc analytics is considered important. This is because people are doing those queries, and people don't like to wait for hours. But even more important is that business analytics is often an iterative process. Ask a question, check the answer, refine or change the question. Hours long MapReduce jobs are prohibitive to this process.

New Data Is Coming in All the Time
Big Data environments are constantly fed new data. This is not really big news, but I was still surprised by the constant reiteration of this fact. The constant data growth means that ad-hoc queries get either slower over time or need to work on samples. To remedy this, companies are writing, scrubbing and categorizing MapReduce jobs. These jobs basically strip out all the unimportant stuff and put cleansed, streamline easy-to-access data into new files. Instead of executing analytics against raw files, the analyst works on a cleansed data set. The implications are that scrubbing jobs need to be maintained all the time (as data input is changing over time) and they need to be able to keep up with the velocity of the input. MapReduce is not allowed to run for hours, but needs to be quick and iterative.

Big Data Is Not Cheap
While it sounds obvious, it's something that's not talked about by the vendors unless specifically asked. Hadoop requires a lot of hardware and a lot of expertise. Especially the expertise is hard to come by as of yet. While hardware might be cheap (you don't need expensive boxes for Hadoop) the bigger the environment the higher the operational costs. That operational cost is the reason some Hadoop vendors exist on services alone and also why customers are demanding better monitoring and management solutions.

Data Must Be Accessible at Low Latencies to Provide Value
One very interesting fact is that most early adopters that use Hadoop for analytics use it for ad-hoc analytics and not as a traditional warehouse. They use MapReduce to do the heavy lifting that is usually reserved for ETL jobs and put the resulting dimensions in existing data warehouses or into a NoSQL solution like HBase, Cassandra or MongoDB. These solutions provide low latency access semantics and are then integrated in the transactional application world, e.g. to provide recommendations to the end users.

This does not absolve them from optimizing their Hadoop environment where they can, but it gives them the much needed real time access that Hadoop so far does not provide. This also makes for additional complexity that needs to be maintained and monitored.

NoSQL Solutions Need Management and Monitoring as Well
NoSQL solutions are most often used to provide low latency databases with failover and horizontal scaling characteristics. As expected, practitioners quickly run into new issues like distribution and wrong access patterns. Most NoSQL solutions lack sophisticated monitoring or performance analysis tools and require experts instead. Fortunately several companies are working on providing those tools and some APM vendors work hard to support NoSQL databases similar to normal databases. This is emphasized by another interesting finding: With a fast and scalable data storage, the application itself quickly becomes the response time and scaling bottleneck.

Applications Using NoSQL Technologies Are More Complex
Most NoSQL solutions surrender more complex logic like joins in order to achieve horizontally scalable data distribution. That logic is moved to the application - arguably this is where it should be anyway. NoSQL solutions require data to be stored in a query access optimized way - de-normalization is the key. The flip side of storing data multiple times and the need to keep it in sync on updates, is that the storage logic again becomes more complex. More application logic usually means less performance.

My conclusion as a performance engineer is relatively clear: Big Data requires Performance Management and Monitoring Tools to fulfill its promise in a cost effective and timely manner. Here are some suggestions on what you should think about when you start a Big Data project.

  1. Large Hadoop environments are hard to manage and operate. Without automation in terms of deployment, operations, monitoring and root cause analysis they quickly become unmanageable. Make sure to have a monitoring solution in place that informs you pro-actively of any infrastructure or software issues that would affect your operation. It needs to give you an easy way to pinpoint the root cause.
  2. The easiest way to identify new performance issues is to detect and analyze change. Adopt a life cycle and 24/7 production APM approach. It will enable you to notice changes in data and compute distribution over time. In addition a life cycle approach will allow you to immediately pin point any negative changes introduced by a new software release.
  3. Don't just throw more and more hardware at the problem. While you can use cheaper hardware for Hadoop, it's still cost. But more than that you have to consider the operational drag. Every node you add will make traditional log based analysis more complicated. Instead ensure that you have an APM solution in place that lets you understand and optimize MapReduce jobs at their core and reduce both the time and resources it takes to run them.
  4. Your Hadoop cluster is no island, but will always be connected in some form or the other to a real time or at least transactional system. Make sure that you have a monitoring solution in place that can support both.

NoSQL applications tend to have more complex logic. The very performance and scalability of the store depends on correct data access and data distribution. An good monitoring solution allows you to monitor and optimize that additional complexity with ease; it also enables you to understand how your application access the data and how that access is distributed across your NoSQL cluster in your production system. The best way to ensure a scalable and fast NoSQL store is to ensure optimal distribution and access patterns.

Conclusion
Big Data is still very much an emerging technology and its promises are huge. But in order to deliver on those promises it must be cost and time effective to those that harness its value - The Business and not just technology experts.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Admiral Calcote - also known as Lee Calcote (@lcalcote) or the Ginger Geek to his friends - gave a presentation entitled Characterizing and Contrasting Container Orchestrators at the 2016 All Day DevOps conference. Okay, he isn't really an admiral - nor does anyone call him that - but he used the title admiral to describe what container orchestrators do, relating it to an admiral directing a fleet of container ships. You could also say that they are like the conductor of an orchestra, directing...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Gone are the days when application development was the daunting task of the highly skilled developers backed with strong IT skills, low code application development has democratized app development and empowered a new generation of citizen developers. There was a time when app development was in the domain of people with complex coding and technical skills. We called these people by various names like programmers, coders, techies, and they usually worked in a world oblivious of the everyday pri...
The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).
The goal of Microservices is to improve software delivery speed and increase system safety as scale increases. Microservices being modular these are faster to change and enables an evolutionary architecture where systems can change, as the business needs change. Microservices can scale elastically and by being service oriented can enable APIs natively. Microservices also reduce implementation and release cycle time and enables continuous delivery. This paper provides a logical overview of the Mi...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Some journey to cloud on a mission, others, a deadline. Change management is useful when migrating to public, private or hybrid cloud environments in either case. For most, stakeholder engagement peaks during the planning and post migration phases of a project. Legacy engagements are fairly direct: projects follow a linear progression of activities (the “waterfall” approach) – change managers and application coders work from the same functional and technical requirements. Enablement and develo...
Some people are directors, managers, and administrators. Others are disrupters. Eddie Webb (@edwardawebb) is an IT Disrupter for Software Development Platforms at Liberty Mutual and was a presenter at the 2016 All Day DevOps conference. His talk, Organically DevOps: Building Quality and Security into the Software Supply Chain at Liberty Mutual, looked at Liberty Mutual's transformation to Continuous Integration, Continuous Delivery, and DevOps. For a large, heavily regulated industry, this task...
For DevOps teams, the concepts behind service-oriented architecture (SOA) are nothing new. A style of software design initially made popular in the 1990s, SOA was an alternative to a monolithic application; essentially a collection of coarse-grained components that communicated with each other. Communication would involve either simple data passing or two or more services coordinating some activity. SOA served as a valid approach to solving many architectural problems faced by businesses, as app...
Many IT organizations have come to learn that leveraging cloud infrastructure is not just unavoidable, it’s one of the most effective paths for IT organizations to become more responsive to business needs. Yet with the cloud comes new challenges, including minimizing downtime, decreasing the cost of operations, and preventing employee burnout to name a few. As companies migrate their processes and procedures to their new reality of a cloud-based infrastructure, an incident management solution...
Gaining visibility in today’s sprawling cloud infrastructure is complex and laborious, involving drilling down into tools offered by various cloud services providers. Enterprise IT organizations need smarter and effective tools at their disposal in order to address this pertinent problem. Gaining a 360 - degree view of the cloud costs requires collection and analysis of the cost data across all cloud infrastructures used inside an enterprise.
Our work, both with clients and with tools, has lead us to wonder how it is that organizations are handling compliance issues in the cloud. The big cloud vendors offer compliance for their infrastructure, but the shared responsibility model requires that you take certain steps to meet compliance requirements. Which lead us to start poking around a little more. We wanted to get a picture of what was available, and how it was being used. There is a lot of fluidity in this space, as in all things ...
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
Recent survey done across top 500 fortune companies shows almost 70% of the CIO have either heard about IAC from their infrastructure head or they are on their way to implement IAC. Yet if you look under the hood while some level of automation has been done, most of the infrastructure is still managed in much tradition/legacy way. So, what is Infrastructure as Code? how do you determine if your IT infrastructure is truly automated?
Every few years, a disruptive force comes along that prompts us to reframe our understanding of what something means, or how it works. For years, the notion of what a computer is and how you make one went pretty much unchallenged. Then virtualization came along, followed by cloud computing, and most recently containers. Suddenly the old rules no longer seemed to apply, or at least they didn’t always apply. These disruptors made us reconsider our IT worldview.