Click here to close now.

Welcome!

@MicroservicesE Blog Authors: Lori MacVittie, Cloud Best Practices Network, Liz McMillan, Elizabeth White, Michael Kanasoot

Related Topics: @BigDataExpo Blog, Java IoT, @MicroservicesE Blog, @ContainersExpo, Agile Computing, @CloudExpo Blog, Apache

@BigDataExpo Blog: Article

Examining the True Cost of Big Data

As you start on your Big Data journey or project, be sure to ask what exactly the business requires

The good news about the Big Data market is that we generally all agree on the definition of Big Data, which has come to be known as data that has volume, velocity and variety where businesses need to collect, store, manage and analyze in order to derive business value or otherwise known as the "4 V's." However, the problem with such a broad definition is that it can mean different things to different people once you start to put some real values next to those V's.

Let's be honest, Volume can be a different thing to different organizations. To some it is anything above 10 terabytes of managed data in their BI environment and to others it is petabyte scale and nothing less. Likewise velocity can be multi-billions of daily records coming into the enterprise from various external and internal networks. When it really comes down to it, each business situation will be quite different not only from a size and speed perspective but also more important from the business use-case or requirement. A large bank's Big Data problem could be very different to that of an online retailer or an airline. If you compare what say a hospital is trying to do collecting and analyzing all the sensor patient data compared to a utilities provider running a smart-grid or a telecommunications operator. True, all could be categorized as machine generated or raw data but the exact type of data might be different not to mention the volume or growth rate. Probably the one unique common denominator across all aforementioned industries is that everyone is keeping the data for longer time-periods. No one is throwing it away - not even the detailed data.

The Many Cost Factors to Consider
Costs will of course vary depending on the individual allocated IT budget but regardless, how the company allocates IT budget dollars to new Big Data initiatives needs consideration. Let's face it, enterprise buyers didn't suddenly come into a bunch of newfound IT assets or line items on their budget and the current world economic situation would certainly not suggest so. More likely existing budgets are being re-allocated and instead of spending more on say existing traditional data warehouses or appliances, monies are being allocated to new projects running on open source projects including Apache Hadoop which promises both low cost, ease of scale not to mention the obvious best approach to managing and analyzing multi-structured data sets. The difficultly then arises how do you integrate or have your Hadoop environment co-exist with the established BI or DW environment that the business has grown to love and rely upon?

Leverage What You Already Have
Let's assume you have a data warehouse or data mart in place today and you already use various ETL or data movement tools and BI dashboard, analytics or reporting tools and you don't want to disrupt business users which could not only impacting performance levels but also training up on a new set of tools. In fact you already likely beholden to strict SLA's around response times for the various business reports and KPI's. However, at the same time the business is demanding access to new data sets in order to glean better insights either directly analyzing this data or co-mingling it with existing customer data. This could take the form of web-logs, click stream data or social media data from various interactive sites the business is now leveraging and tracking. The promise of impacting profit margins and gaining a competitive edge just cannot be avoided.

As we all know, traditional relational or columnar databases can't handle the unstructured data types so IT needs to rollout a different solution to satisfy the business demands. Evaluations can take many forms but typically will start with which Hadoop distribution, which NoSQL or NewSQL database and what query access tools in addition to MapReduce. It is certainly no easy task as there are a large number of technology solutions on the market today that claim to run on or with Hadoop providing MapReduce or SQL-like capabilities which all satisfy the requirement of managing volumes of unstructured data. Some are more mature than others; some proven and not all are low-cost. Open source on the surface looks very low cost but as soon as you require any level of support, which lets face it once it's live and relied upon as a business critical environment, you will need to allocate a line item on your budget. The Big Data line item won't just be one line as it will need to include all components required to properly rollout a Big Data solution to truly satisfy the business demands. Just like any other IT environment the obvious pieces will include: Software licensing and support, hardware, skilled dedicated resources, professional services and training and the dedicated time of business users to provide input on key requirements including specifying types of reports, queries and analysis which will naturally change and evolve over time.

Big Data Costs Can Quickly Creep Up
In terms of the hardware expenditure required to manage the new Big Data set, you may start out with a Hadoop cluster of say 10 nodes and yes that is certainly manageable but if your data velocity is significant, you can quickly reach 100+ nodes and now you will face a number of other expenses including additional headcount and skilled resources to manage the environment proactively in addition to tools for managing the cluster including system management and alerting and potentially add-on software which can vary by business use-case but might cover real-time analytics against streaming data for say fraud detection or detection of unusual patterns. You may also need a business tool to provide a front-end GUI dashboard to track specific KPIs or data visualization tools so business users can quickly understand what is going on. Very quickly the costs become less about the storage and hardware and more around the software that focuses on getting the most value from this newly collected data set.

There is no denying the fact that Big Data presents great new opportunities but reaching the point of a quantifiable ROI in a fast time frame is still a very real challenge. Everyone is talking about Big Data and all the innovative technology approaches to tackling it but it is still difficult to find lots of business success stories within any one-industry sector. It's still fairly immature but the good news is that its moving at a much faster pace than any other IT project today and certainly our data warehouse and BI forefathers have provided lessons learned over the past two decades.

Big Data Is Big Business but It Comes with Strict Requirements
If we want to examine more closely the main areas of expenditure for a Big Data project, it is probably best to look at it through the lens of a specific type of business and use-case. Let's take a large financial institution that has a number of existing traditional data warehouse / BI environments but because the business doesn't want to throw any data away (well let's face it regulations don't allow that for a number of years) and realistically the business wants to retain specific data sets for ongoing trending and analysis. This includes examining questions such as "what constitutes a low-risk client based on spending behavior patterns over a specific time period cross-referenced with customer demographics" which will help the institution better target a particular segment of the market.

Given the IT budget doesn't allow for increased spend that correlates with data growth rates, they need to seriously reduce costs and so decide to go the route of a Hadoop-based environment given its promise for low-cost scale and the fact that it can provide insights into customer patterns by capturing semi- and unstructured data. Front-ending the warehouse with a dedicated Hadoop cluster is the preferred architectural approach but the business users still want access to both the Hadoop environment and the existing traditional data warehouse environment.

Given we are talking about a financial institution, the question of security and availability quickly come to the top of the requirements list. At the same time, if business users want to access that data, SQL query access and using the current BI tool against that new set of data is also a requirement. If you can avoid having to the move large chunks of data on a frequent basis from one to the other, it will not only reduce costs but also latency. In an ideal world, being able to leverage the skill sets you already have and avoiding duplication of work is key.

Below is a quick table outlining the main cost factors to be considered and a set of comments against each of these areas that could reduce costs.

 

Big Data on Hadoop Cost Factors

Key Consideration to drive down cost

 

Storage

Look at databases that provide data compression to yield storage savings (better than GZip or LZO).

 

Hardware (Nodes)

Granular data compression at database level will reduce nodes over time.

 

Data Analytics - Skilled Resources

Examine technology solutions that provide standard SQL or BI tool access in addition to MapReduce (Pig etc.)

 

Cluster management - Skilled Resources

Leverage existing Dev-operations staff if you deploy a SQL-compliant data environment

 

Security

Look for database solutions that provide built-in security permissions and access.

 

Availability / DR

Consider a data management environment that doesn't require additional tools for replication.

 

Training

Consider solutions where you don't need to retrain or hire all new resources. Leverage what you have (standard SQL-skilled DBAs)

Summary: Consider All Factors and Get Business Buy-in Quickly
Big Data is fundamentally a business problem. If you begin with the question of "what is the business trying to achieve by collecting, storing and analyzing this new set of data...", you will start down the right path to realizing business gains. Whether you outsource the initiative or bring in external consultants and vendors to manage the project, the same questions will arise and in order to leverage what you already have which includes both existing IT environments and skills, you will be better able to contain costs.

Furthermore, we all love the promise of new innovative technologies including Hadoop and MapReduce but without leveraging tried and tested standards we have come to love and respect, it doesn't make a whole lot of sense from both a technical or economic sense. As you start on your Big Data journey or project, be sure to ask what exactly the business requires and how can you leverage what you already have today. We all know, getting business user buy-in and success is half the battle to a successful rollout.

More Stories By John Bantleman

John Bantleman, CEO of RainStor, has more than 20 years’ experience in the management of software companies. Prior to overseeing RainStor, he transformed LBMS into a $45 million business prior to its successful NASDAQ flotation in 1997. Today’s LBMS’ technology is now part of CA’s product portfolio. The following year John was instrumental in the launch of Evolve, and drove the company through to a successful IPO on NASDAQ.

Returning to the UK in 2003, John spent 12 months working on the advisory boards of venture capital organizations such as Apax Partners. He joined RainStor Inc. as Chairman in 2004 and became CEO at the start of 2007 and relocated back to the US to head-up worldwide operations in 2009.

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Vikas.Deolaliker 09/21/12 06:49:00 PM EDT

Great article. Another data point, the IT budget is up only 4% in 2013 over 2012, so don't expect everyone to rush into Bigdata.

The fourth "V" is visualization. If you cannot render the analysis in a intuitive way, there is no value in that analysis. In fact, visualization should be the first step in design of a bigdata system - it helps trim down the architectural bloat into something that is within budget and useful.

Elad Israeli 09/19/12 06:07:00 PM EDT

Fascinating post. Still waiting for someone to crack the nut that is Big Data Analytics.

douglaney 08/29/12 03:36:00 PM EDT

Great piece John. Excellent detail. Thought you and your readers might be interested in where the "3Vs" of big data originated--in a Gartner piece I authored over 11 years ago. I recently unearthed a copy so folks to refer to and cite it.

Cheers,
Doug Laney, VP Research, Gartner, @doug_laney

@MicroservicesExpo Stories
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
Many people recognize DevOps as an enormous benefit – faster application deployment, automated toolchains, support of more granular updates, better cooperation across groups. However, less appreciated is the journey enterprise IT groups need to make to achieve this outcome. The plain fact is that established IT processes reflect a very different set of goals: stability, infrequent change, hands-on administration, and alignment with ITIL. So how does an enterprise IT organization implement change...
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Mashape is bringing real-time analytics to microservices with the release of Mashape Analytics. First built internally to analyze the performance of more than 13,000 APIs served by the mashape.com marketplace, this new tool provides developers with robust visibility into their APIs and how they function within microservices. A purpose-built, open analytics platform designed specifically for APIs and microservices architectures, Mashape Analytics also lets developers and DevOps teams understand w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud envir...
Sumo Logic has announced comprehensive analytics capabilities for organizations embracing DevOps practices, microservices architectures and containers to build applications. As application architectures evolve toward microservices, containers continue to gain traction for providing the ideal environment to build, deploy and operate these applications across distributed systems. The volume and complexity of data generated by these environments make monitoring and troubleshooting an enormous chall...
Containers and Docker are all the rage these days. In fact, containers — with Docker as the leading container implementation — have changed how we deploy systems, especially those comprised of microservices. Despite all the buzz, however, Docker and other containers are still relatively new and not yet mainstream. That being said, even early Docker adopters need a good monitoring tool, so last month we added Docker monitoring to SPM. We built it on top of spm-agent – the extensible framework f...
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
SYS-CON Events announced today that the "Second Containers & Microservices Conference" will take place November 3-5, 2015, at the Santa Clara Convention Center, Santa Clara, CA, and the “Third Containers & Microservices Conference” will take place June 7-9, 2016, at Javits Center in New York City. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
The causality question behind Conway’s Law is less about how changing software organizations can lead to better software, but rather how companies can best leverage changing technology in order to transform their organizations. Hints at how to answer this question surprisingly come from the world of devops – surprising because the focus of devops is ostensibly on building and deploying better software more quickly. Be that as it may, there’s no question that technology change is a primary fac...