Welcome!

Microservices Expo Authors: Ken Schwaber, Aruna Ravichandran, Liz McMillan, Carmen Gonzalez, Yeshim Deniz

Related Topics: Mobile IoT, Java IoT, Microservices Expo, Machine Learning , Agile Computing, Perl

Mobile IoT: Article

Delivering Breakthrough Performance with 802.11ac

Breaking the wireless Ethernet gigabit barrier

Consumers are continuing to adopt multiple connected devices and video content is expected to reach more than 70 percent of global traffic. This growth and the increased reliance on wireless networks is putting stress on existing 802.11a/b/g/n networks. As a result of this high usage, users are likely to experience deteriorated performance, choppy videos and slower load times. At a time when IT managers report that network users are now averaging more than one Wi-Fi connected device per person, solutions to handle the rapid growth of devices are at a premium.

The next generation of the 802.11 standard, or IEEE 802.11ac, promises to finally break the wireless Ethernet gigabit barrier. This technology will deliver higher bandwidth while retaining better quality of experience (QoE) for end users, and is expected to be adopted rapidly into all markets: residential, enterprise, carrier and large venue.

Some of the first applications for 802.11ac's faster speeds will better residential video streaming, data syncing between mobile devices, and data backup. Streaming digital media between devices faster and simultaneously connecting more wireless devices will be some of the starting benefits for consumers and enterprises. In terms of service providers, they will be able to deploy the new technology to offload traffic from congested 3G and 4G-LTE cellular networks, and in dense operator hotspots 802.11ac will supply better performance to more users.

To date, all 802.11 revisions have focused on increasing transport speeds, which lead to higher traffic delivery rates and ultimately to faster response times as experienced by the end user. The introduction of 802.11n brought advances of MIMO (multiple-in, multiple-out) to deliver traffic over multiple spatial streams, and packet aggregation. MIMO delivered marked improvements in physical transport rates, enabling more bits per second to be transmitted than ever before over Wi-Fi. Packet aggregation delivered equally impressive improvements in transport experience, allowing devices to send more data once they had gained access to the wireless media. The new 802.11ac protocol is continuing down this path by preserving aggregation techniques, advancing the physical transport rates yet again, and introducing the concept of parallel transport into Wi-Fi through a technique known as Multi-User MIMO (MU-MIMO), where multiple client devices are receiving packets concurrently.

This is the first time Wi-Fi history that directed traffic can be delivered to multiple client devices at the same time. This ability has significant impact on delivery of content to any location with multiple users, especially where content is revenue-generating or critical.

Achieving Increased Gigabit+ Performance with 802.11ac
In order to reach the best performance, 802.11ac uses a variety of advancements and addresses the need for performance improvement through three primary initiatives:

  1. Increasing Raw Bandwidth allows for the higher speeds associated with 802.11ac. It makes use of a higher rate encoding scheme known as 256-QAM, which transmits 33 percent more data than the 64-QAM used in the 802.11n standard. Signal-to-noise ratios that worked for 802.11n are no longer sufficient because the difference in detectable signal level is now significantly smaller.
  2. Multi-user Support makes 802.11ac a real information superhighway, unlike its predecessors that only allowed one device to transmit at a time. MU-MIMO allows an access point to transmit data to multiple client devices on the same channel at the same time. It works by directing some of the spatial streams to one client and other spatial streams to a second client. MU-MIMO is critical to performance improvements in environments with high client counts.
  3. Individual Client Channel Optimization is also a major performance booster. The concept behind channel optimization is transmit beamforming (TxBF). The reflections and attenuations, common during the transmission of 802.11 signals, have a significant performance impact on overall network performance. With TxBF, the access point communicates with the client devices to determine the types of impairment that are present in the environment. Then the access point "precodes" the transmitted frame with the inverse of the impairment such that when the next frame is transmitted and transformed by the medium, it is received as a clean frame by the client. Since no two clients are in the same location, TxBF needs to be applied on a client-by-client basis and constantly updated to reflect the changing environment.

Overcoming Technical Challenges
One of the biggest frustration for developers and users of 802.11 is that it needs to work with previous versions. It can also be extremely difficult to identify the root cause of development problems. For example, when an application performs poorly, it is often hard to determine if it is due to an environmental, client, or network issue. The various devices in an 802.11 network are highly correlated so an issue in one area quickly ripples through to many other areas. Developers have lacked an effective means to assess the total picture from the RF to the application layer.

IEEE 802.11ac makes this problem significantly more challenging. In addition to being deployed into an existing environment with ten years' worth of previous releases, 802.11ac makes use of advanced technologies that are substantially more complex and demanding than previous versions. This latest generation of 802.11 requires a rethinking of how the technology is developed and tested to include a much more holistic view through the product development life cycle.

Traditionally, the RF section is verified using one set of equipment, and then the upper layer functions are tested using a second set of tools. The overall technical complexity and the introduction of new technologies such as TxBF demand coordination and control between the different layers of the protocol stack. Without this coordination, it would be difficult to utilize these functions and to quickly pinpoint performance issues.

802.11ac brings the promise of moving Wi-Fi into the limelight as a trusted and capable communication protocol, and will require equipment and rigor to match. The new generation of testing should be able to decode every frame in real-time and determine each frame's RF characteristics, as well as their frame-level performance, and generate every frame without limitation in real-time to adequately test receiver performance. Previous approaches use a digitized data record approach for both generation and analysis, creating or capturing what are known as I/Q files, and equipment typically adapted from the general-purpose RF domain. This result in equipment being capable of a single spatial stream, and able to generate or capture a small fraction of the frames required to perform testing. To meet the need, the approach needs to be able to generate and analyze all frames in real-time to the limit of the specification, tightly integrate RF and MAC functionality in 802.11ac, and include integral, real-time channel emulation to address TxBF performance.

Increasing Performance for All Markets
Gigabit+ performance for residential, enterprise, carrier and large venue markets is possible with the 802.11ac standard. But to realize the performance and density promise, chip and hardware developers must navigate some significant technical challenges, as detailed in this article. They must ensure graceful migrations from existing deployed solutions by providing backward compatibility and delivering high performance RF transmission and receive performance with a wide variety of signals. They must maintain high performance to multiple clients under the channel conditions that will exist in real deployments, while at the same time provide the high reliability and feature robustness to enable enterprise and carrier grade 802.11 adoption. Ultimately, the developers need to ensure that the key application traffic - most notably video - can be delivered with quality.

More Stories By Joe Zeto

Joe Zeto serves as a technical marketing evangelist within Ixia’s marketing organization. He has over 17 years of experience in wireless and IP networking, both from the engineering and marketing sides. He has extensive knowledge and a global prospective of the networking market and the test and measurement industry.

Prior to joining Ixia, Joe was Director of Product Marketing at Spirent Communications running Enterprise Switching, Storage Networking, and Wireless Infrastructure product lines. He has a Juris Docorate from Loyola Law School, Los Angeles, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
I’m told that it has been 21 years since Scrum became public when Jeff Sutherland and I presented it at an Object-Oriented Programming, Systems, Languages & Applications (OOPSLA) workshop in Austin, TX, in October of 1995. Time sure does fly. Things mature. I’m still in the same building and at the same company where I first formulated Scrum.[1] Initially nobody knew of Scrum, yet it is now an open source body of knowledge translated into more than 30 languages[2] People use Scrum worldwide for ...
A lot of time, resources and energy has been invested over the past few years on de-siloing development and operations. And with good reason. DevOps is enabling organizations to more aggressively increase their digital agility, while at the same time reducing digital costs and risks. But as 2017 approaches, the hottest trends in DevOps aren’t specifically about dev or ops. They’re about testing, security, and metrics.
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in Embedded and IoT solutions, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 7-9, 2017, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and E...
@DevOpsSummit taking place June 6-8, 2017 at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @DevOpsSummit at Cloud Expo New York Call for Papers is now open.
SYS-CON Events announced today that Catchpoint Systems, Inc., a provider of innovative web and infrastructure monitoring solutions, has been named “Silver Sponsor” of SYS-CON's DevOps Summit at 18th Cloud Expo New York, which will take place June 7-9, 2016, at the Javits Center in New York City, NY. Catchpoint is a leading Digital Performance Analytics company that provides unparalleled insight into customer-critical services to help consistently deliver an amazing customer experience. Designed ...
"We got started as search consultants. On the services side of the business we have help organizations save time and save money when they hit issues that everyone more or less hits when their data grows," noted Otis Gospodnetić, Founder of Sematext, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
2016 has been an amazing year for Docker and the container industry. We had 3 major releases of Docker engine this year , and tremendous increase in usage. The community has been following along and contributing amazing Docker resources to help you learn and get hands-on experience. Here’s some of the top read and viewed content for the year. Of course releases are always really popular, particularly when they fit requests we had from the community.
Here’s a novel, but controversial statement, “it’s time for the CEO, COO, CIO to start to take joint responsibility for application platform decisions.” For too many years now technical meritocracy has led the decision-making for the business with regard to platform selection. This includes, but is not limited to, servers, operating systems, virtualization, cloud and application platforms. In many of these cases the decision has not worked in favor of the business with regard to agility and cost...
Software delivery was once specific to the IT industry. Now, Continuous Delivery pipelines are used around world from e-commerce to airline software. Building a software delivery pipeline once involved hours of scripting and manual steps–a process that’s painful, if not impossible, to scale. However Continuous Delivery with Application Release Automation tools offers a scripting-free, automated experience. Continuous Delivery pipelines are immensely powerful for the modern enterprise, boosting ...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
"We provide DevOps solutions. We also partner with some key players in the DevOps space and we use the technology that we partner with to engineer custom solutions for different organizations," stated Himanshu Chhetri, CTO of Addteq, in this SYS-CON.tv interview at DevOps at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
@DevOpsSummit at Cloud taking place June 6-8, 2017, at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long developm...
True Story. Over the past few years, Fannie Mae transformed the way in which they delivered software. Deploys increased from 1,200/month to 15,000/month. At the same time, productivity increased by 28% while reducing costs by 30%. But, how did they do it? During the All Day DevOps conference, over 13,500 practitioners from around the world to learn from their peers in the industry. Barry Snyder, Senior Manager of DevOps at Fannie Mae, was one of 57 practitioners who shared his real world journe...
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
As 2016 approaches its end, the time to prepare for the year ahead is now! Following our own advice, we sat down with three XebiaLabs thought leaders–Andrew Phillips, Tim Buntel, and TJ Randall–and asked what they think the future has in store for the DevOps world. In 2017, we’ll see a new wave of “next gen platform” projects focused on container orchestration frameworks such as Kubernetes, and re-tooled PaaS platforms such as OpenShift or Cloud Foundry. Acceptance of the need for a cross-machi...
We call it DevOps but much of the time there’s a lot more discussion about the needs and concerns of developers than there is about other groups. There’s a focus on improved and less isolated developer workflows. There are many discussions around collaboration, continuous integration and delivery, issue tracking, source code control, code review, IDEs, and xPaaS – and all the tools that enable those things. Changes in developer practices may come up – such as developers taking ownership of code ...
Software development is a moving target. You have to keep your eye on trends in the tech space that haven’t even happened yet just to stay current. Consider what’s happened with augmented reality (AR) in this year alone. If you said you were working on an AR app in 2015, you might have gotten a lot of blank stares or jokes about Google Glass. Then Pokémon GO happened. Like AR, the trends listed below have been building steam for some time, but they’ll be taking off in surprising new directions b...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of D...
When building DevOps or continuous delivery practices you can learn a great deal from others. What choices did they make, what practices did they put in place, and how did they connect the dots? At Sonatype, we pulled together a set of 21 reference architectures for folks building continuous delivery and DevOps practices using Docker. Why? After 3,000 DevOps professionals attended our webinar on "Continuous Integration using Docker" discussing just one reference architecture example, we recogn...
An overall theme of Cloud computing and the specific practices within it is fundamentally one of automation. The core value of technology is to continually automate low level procedures to free up people to work on more value add activities, ultimately leading to the utopian goal of full Autonomic Computing. For example a great way to define your plan for DevOps tool chain adoption is through this lens. In this TechTarget article they outline a simple maturity model for planning this.