Click here to close now.

Welcome!

@MicroservicesE Blog Authors: Liz McMillan, Elizabeth White, Pat Romanski, Cloud Best Practices Network, Lori MacVittie

Related Topics: @CloudExpo Blog, @MicroservicesE Blog, @ContainersExpo, Agile Computing, Apache

@CloudExpo Blog: Article

The Big Data Revolution

The problem with the term Big Data is that it’s used in a lot of different ways

For many years, companies collected data from various sources that often found its way into relational databases like Oracle and MySQL. However, the rise of the Internet, Web 2.0, and recently social media began an enormous increase in the amount of data created as well as in the type of data. No longer was data relegated to types that easily fit into standard data fields. Instead, it now came in the form of photos, geographic information, chats, Twitter feeds, and emails. The age of Big Data is upon us.

Big Data Beginnings
A study by IDC titled "The Digital Universe Decade" projects a 45-fold increase in annual data by 2020. In 2010, the amount of digital information was 1.2 zettabytes (1 zettabyte equals 1 trillion gigabytes). To put that in perspective, the equivalent of 1.2 zettabytes is a full-length episode of "24" running continuously for 125 million years, according to IDC. That's a lot of data. More important, this data has to go somewhere, and IDC's report projects that by 2020, more than one-third of all digital information created annually will either live in or pass through the cloud. With all this data being created, the challenge will be how to collect, store, and analyze what it means.

Business intelligence (BI) systems have always had to deal with large data sets. Typically the strategy was to pull in "atomic" data at the lowest level of granularity, then aggregate the information to a consumable format for end users. In fact, it was preferable to have a lot of data because you could also drill-down from the aggregation layer to get at the more detailed information, as needed.

In other words, large data sets have been around a long time. And there have been many attempts at trying to manage, wrangle, and tame the onslaught of data being generated from everywhere. But it wasn't until Jeffrey Dean and Sanjay Ghemawat of Google Labs wrote their influential paper on MapReduce in 2003 that Big Data really started to take shape. Google has had to deal with large amounts of raw data (such as crawled documents and web request logs) that needed to be analyzed in a timely manner. Creating MapReduce was their way of being able to abstract the compute parallelization, distribution of data, fault tolerance, and load balancing from developers so they could focus on expressing the computations necessary to analyze the data. This seminal paper reportedly inspired Doug Cutting to develop an open-source implementation of the MapReduce framework called "Hadoop," which was named after his son's toy elephant. Yahoo famously embraced this implementation after hiring Cutting in 2004. Yahoo continued to build upon this technology and first used Hadoop in production in 2008 for its search "webmap," which was an index of all known webpages and all the metadata needed to search them.

One of the key characteristics of Hadoop was that it could run on commodity hardware and automatically distribute jobs. By its nature, it is designed to be fault tolerant so jobs aren't impacted by the failure of a single node. According to an article in Wired magazine about Yahoo's use of Hadoop, "Hadoop could ‘map' tasks across a cluster of machines, splitting them into tiny sub-tasks, before ‘reducing' the results into one master calculation." Soon after, companies like eBay and Facebook were adopting the technology and implementing it internally. Reportedly, Facebook has the largest Hadoop cluster in the world, currently at 30 petabytes (PB).

Although early adopters of Hadoop and other Big Data technologies tended to form around the Internet, social media, and ad networks, Big Data solutions are intended to be general-purpose tools. With most companies now integrating social media into their offerings, the amount of data created internally combined with those extracted externally will only increase. This is an indication that companies from all industries will need to start investigating how to implement Big Data technologies to make use of all this data they're collecting and creating.

Making Sense of Big Data
The problem with the term Big Data is that it's used in a lot of different ways. One definition is that Big Data is any data set that is too large for on-hand data management tools. According to Martin Wattenberg, a scientist at IBM, "The real yardstick ... is how it [Big Data] compares with a natural human limit, like the sum total of all the words that you'll hear in your lifetime." Essentially, what makes something Big Data is that it:

  • Is at a large scale (petabytes, not gigabytes)
  • Has high velocity (frequently polled, generated, or collected)
  • Is unstructured (not only from a relational database)

Collecting that data is a solvable problem, but making sense of it, (particularly in real time), is the challenge that technology tries to solve. This new type of technology is often listed under the title of NoSQL (or Not Only SQL) and includes distributed databases that are a departure from relational databases like Oracle and MySQL. These systems are specifically designed to be able to parallelize compute, distribute data, and create fault tolerance on a large cluster of servers. Some examples of NoSQL projects and software are Cassandra, Hadoop, Membase, MongoDB, and Riak.

The techniques vary, but there is a definite distinction between SQL relational databases and their NoSQL brethren. Most notably, NoSQL systems share the following characteristics:

  • Do not use SQL as their primary query language
  • May not require fixed table schemas
  • May not give full ACID guarantees (Atomicity, Consistency, Isolation, Durability)
  • Scale horizontally

Because of the lack of ACID, NoSQL is used when performance and real-time results are more important than consistency. For example, if a company wants to update its website in real time based on an analysis of the behaviors of a particular user interaction with the site, it will most likely turn to NoSQL technologies to solve this use case.

However, this shortcoming doesn't mean relational databases are going away. In fact, it's likely that in larger implementations, NoSQL and SQL will function together. Just as NoSQL was designed to solve a particular use case, so do relational databases solve theirs. Relational databases excel at organizing structured data and are the standard for serving up ad-hoc analytics and BI reporting. In fact, Apache Hadoop even has a separate project called Sqoop that is designed to link Hadoop with structured data stores. Most likely, those who implement NoSQL will maintain their relational databases for legacy systems and for reporting off their NoSQL clusters.

Big Data Moves to the Cloud
The early adopters of Big Data tended to be companies with capital budgets that could be invested into dedicated data centers. However, with the incredible increase in the amount of data generated, collected, and analyzed, smaller companies can take advantage of the cloud and off-load the hardware management to those vendors. Two traits that many of these NoSQL solutions have in common make them a seemingly natural fit for the cloud: One is that the nodes are distributed, and the second is that they run on commodity hardware. The cloud is designed for horizontal scaling and often built on low-cost, commodity hardware, especially at the infrastructure-as-service (IaaS) layer, where customers simply need infrastructure and have the application expertise to build and configure their own Big Data application (whether it is with Hadoop, Cassandra, or any number of products).

Not all clouds are built the same, however. One of the design elements you should look for is the ability for each virtual server in the Big Data cluster to be deployed on different nodes. Although the servers are all on the same private VLAN, ensuring that each server is on different hardware solves for two problems: (1) all the traffic and processing aren't hitting the same hardware, and (2) the cluster is protected against hardware failure because all the servers are distributed. Whether or not the architecture is assuming a name node and data node construct or a Ring design, this setup ensures performance and reliability. In addition, the option of using local storage on the virtual machine and a high-performance network will reduce latency and improve performance.

Given what most users are trying to achieve with Big Data applications-large-scale data sets, large-scale analysis, often in real time-performance is a key factor. Depending on the problem to be solved, users can also leverage a hybrid implementation that combines both virtual and dedicated servers. This setup offers maximum flexibility that balances the elastic, scalable nature of virtual machines with the single-tenancy of dedicated servers. Big Data projects don't happen in a vacuum: Although a NoSQL database can leverage dedicated servers, the app or web servers that present the results of the analysis to end users or that are used to add additional functionality like log file processing can easily be added to as many virtual machines as needed to meet demand. In addition, using the cloud means that users won't need to invest in expensive equipment, pay for power and connectivity, or hire additional resources to maintain hardware. Users simply pay for the infrastructure they need and can scale it as desired over time. The ability to scale up or down to match demand (and to pay only for the infrastructure you actually use) is one of the values of using the cloud for Big Data.

Conclusion: Succeeding with Big Data
With whatever solution you select, you should also take into account the nature of the application and where you'll want to house the processing and the output. The amount of data you collect, analyze, and present will only increase over time. The advantage will go to companies that can collect and analyze this data quickly and efficiently, allowing them to react instantly to customer sentiment and to changing trends in the ever-quickening pace of business. Make sure to select the right infrastructure vendor who can match your performance criteria and has the capacity to grow with you as your data and application needs increase to match the changing demands of your business.

More Stories By Rupert Tagnipes

Rupert Tagnipes is Senior Product Manager at GoGrid, with responsibility for managing and expanding the company's multiple product lines. His focus is on leveraging his technical background and industry knowledge to drive product innovation and increase adoption of the cloud.

He has extensive software product experience at Silicon Valley technology companies solving data analytics and cloud infrastructure problems for customers across a range of industries. Before joining GoGrid, he was a solutions architect at DASHbay, solving complex data analytics and business intelligence problems that leveraged cloud technologies for Internet companies. At Telephia / Nielsen, he was responsible for the technical development of its flagship wireless share measurement product. This product measures the market share of each carrier on a monthly basis and is an innovation in telecommunications data collection, analysis, and delivery. He earned his data chops at Informatica, developing a supply chain business analytics product that leveraged the company’s world-class ETL platform and next-generation business intelligence tools.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
Many people recognize DevOps as an enormous benefit – faster application deployment, automated toolchains, support of more granular updates, better cooperation across groups. However, less appreciated is the journey enterprise IT groups need to make to achieve this outcome. The plain fact is that established IT processes reflect a very different set of goals: stability, infrequent change, hands-on administration, and alignment with ITIL. So how does an enterprise IT organization implement change...
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Mashape is bringing real-time analytics to microservices with the release of Mashape Analytics. First built internally to analyze the performance of more than 13,000 APIs served by the mashape.com marketplace, this new tool provides developers with robust visibility into their APIs and how they function within microservices. A purpose-built, open analytics platform designed specifically for APIs and microservices architectures, Mashape Analytics also lets developers and DevOps teams understand w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud envir...
Sumo Logic has announced comprehensive analytics capabilities for organizations embracing DevOps practices, microservices architectures and containers to build applications. As application architectures evolve toward microservices, containers continue to gain traction for providing the ideal environment to build, deploy and operate these applications across distributed systems. The volume and complexity of data generated by these environments make monitoring and troubleshooting an enormous chall...
Containers and Docker are all the rage these days. In fact, containers — with Docker as the leading container implementation — have changed how we deploy systems, especially those comprised of microservices. Despite all the buzz, however, Docker and other containers are still relatively new and not yet mainstream. That being said, even early Docker adopters need a good monitoring tool, so last month we added Docker monitoring to SPM. We built it on top of spm-agent – the extensible framework f...
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
SYS-CON Events announced today that the "Second Containers & Microservices Conference" will take place November 3-5, 2015, at the Santa Clara Convention Center, Santa Clara, CA, and the “Third Containers & Microservices Conference” will take place June 7-9, 2016, at Javits Center in New York City. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
The causality question behind Conway’s Law is less about how changing software organizations can lead to better software, but rather how companies can best leverage changing technology in order to transform their organizations. Hints at how to answer this question surprisingly come from the world of devops – surprising because the focus of devops is ostensibly on building and deploying better software more quickly. Be that as it may, there’s no question that technology change is a primary fac...