Microservices Expo Authors: Gordon Haff, Elizabeth White, John Katrick, Mehdi Daoudi, Pat Romanski

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Apache

@CloudExpo: Article

The Big Data Revolution

The problem with the term Big Data is that it’s used in a lot of different ways

For many years, companies collected data from various sources that often found its way into relational databases like Oracle and MySQL. However, the rise of the Internet, Web 2.0, and recently social media began an enormous increase in the amount of data created as well as in the type of data. No longer was data relegated to types that easily fit into standard data fields. Instead, it now came in the form of photos, geographic information, chats, Twitter feeds, and emails. The age of Big Data is upon us.

Big Data Beginnings
A study by IDC titled "The Digital Universe Decade" projects a 45-fold increase in annual data by 2020. In 2010, the amount of digital information was 1.2 zettabytes (1 zettabyte equals 1 trillion gigabytes). To put that in perspective, the equivalent of 1.2 zettabytes is a full-length episode of "24" running continuously for 125 million years, according to IDC. That's a lot of data. More important, this data has to go somewhere, and IDC's report projects that by 2020, more than one-third of all digital information created annually will either live in or pass through the cloud. With all this data being created, the challenge will be how to collect, store, and analyze what it means.

Business intelligence (BI) systems have always had to deal with large data sets. Typically the strategy was to pull in "atomic" data at the lowest level of granularity, then aggregate the information to a consumable format for end users. In fact, it was preferable to have a lot of data because you could also drill-down from the aggregation layer to get at the more detailed information, as needed.

In other words, large data sets have been around a long time. And there have been many attempts at trying to manage, wrangle, and tame the onslaught of data being generated from everywhere. But it wasn't until Jeffrey Dean and Sanjay Ghemawat of Google Labs wrote their influential paper on MapReduce in 2003 that Big Data really started to take shape. Google has had to deal with large amounts of raw data (such as crawled documents and web request logs) that needed to be analyzed in a timely manner. Creating MapReduce was their way of being able to abstract the compute parallelization, distribution of data, fault tolerance, and load balancing from developers so they could focus on expressing the computations necessary to analyze the data. This seminal paper reportedly inspired Doug Cutting to develop an open-source implementation of the MapReduce framework called "Hadoop," which was named after his son's toy elephant. Yahoo famously embraced this implementation after hiring Cutting in 2004. Yahoo continued to build upon this technology and first used Hadoop in production in 2008 for its search "webmap," which was an index of all known webpages and all the metadata needed to search them.

One of the key characteristics of Hadoop was that it could run on commodity hardware and automatically distribute jobs. By its nature, it is designed to be fault tolerant so jobs aren't impacted by the failure of a single node. According to an article in Wired magazine about Yahoo's use of Hadoop, "Hadoop could ‘map' tasks across a cluster of machines, splitting them into tiny sub-tasks, before ‘reducing' the results into one master calculation." Soon after, companies like eBay and Facebook were adopting the technology and implementing it internally. Reportedly, Facebook has the largest Hadoop cluster in the world, currently at 30 petabytes (PB).

Although early adopters of Hadoop and other Big Data technologies tended to form around the Internet, social media, and ad networks, Big Data solutions are intended to be general-purpose tools. With most companies now integrating social media into their offerings, the amount of data created internally combined with those extracted externally will only increase. This is an indication that companies from all industries will need to start investigating how to implement Big Data technologies to make use of all this data they're collecting and creating.

Making Sense of Big Data
The problem with the term Big Data is that it's used in a lot of different ways. One definition is that Big Data is any data set that is too large for on-hand data management tools. According to Martin Wattenberg, a scientist at IBM, "The real yardstick ... is how it [Big Data] compares with a natural human limit, like the sum total of all the words that you'll hear in your lifetime." Essentially, what makes something Big Data is that it:

  • Is at a large scale (petabytes, not gigabytes)
  • Has high velocity (frequently polled, generated, or collected)
  • Is unstructured (not only from a relational database)

Collecting that data is a solvable problem, but making sense of it, (particularly in real time), is the challenge that technology tries to solve. This new type of technology is often listed under the title of NoSQL (or Not Only SQL) and includes distributed databases that are a departure from relational databases like Oracle and MySQL. These systems are specifically designed to be able to parallelize compute, distribute data, and create fault tolerance on a large cluster of servers. Some examples of NoSQL projects and software are Cassandra, Hadoop, Membase, MongoDB, and Riak.

The techniques vary, but there is a definite distinction between SQL relational databases and their NoSQL brethren. Most notably, NoSQL systems share the following characteristics:

  • Do not use SQL as their primary query language
  • May not require fixed table schemas
  • May not give full ACID guarantees (Atomicity, Consistency, Isolation, Durability)
  • Scale horizontally

Because of the lack of ACID, NoSQL is used when performance and real-time results are more important than consistency. For example, if a company wants to update its website in real time based on an analysis of the behaviors of a particular user interaction with the site, it will most likely turn to NoSQL technologies to solve this use case.

However, this shortcoming doesn't mean relational databases are going away. In fact, it's likely that in larger implementations, NoSQL and SQL will function together. Just as NoSQL was designed to solve a particular use case, so do relational databases solve theirs. Relational databases excel at organizing structured data and are the standard for serving up ad-hoc analytics and BI reporting. In fact, Apache Hadoop even has a separate project called Sqoop that is designed to link Hadoop with structured data stores. Most likely, those who implement NoSQL will maintain their relational databases for legacy systems and for reporting off their NoSQL clusters.

Big Data Moves to the Cloud
The early adopters of Big Data tended to be companies with capital budgets that could be invested into dedicated data centers. However, with the incredible increase in the amount of data generated, collected, and analyzed, smaller companies can take advantage of the cloud and off-load the hardware management to those vendors. Two traits that many of these NoSQL solutions have in common make them a seemingly natural fit for the cloud: One is that the nodes are distributed, and the second is that they run on commodity hardware. The cloud is designed for horizontal scaling and often built on low-cost, commodity hardware, especially at the infrastructure-as-service (IaaS) layer, where customers simply need infrastructure and have the application expertise to build and configure their own Big Data application (whether it is with Hadoop, Cassandra, or any number of products).

Not all clouds are built the same, however. One of the design elements you should look for is the ability for each virtual server in the Big Data cluster to be deployed on different nodes. Although the servers are all on the same private VLAN, ensuring that each server is on different hardware solves for two problems: (1) all the traffic and processing aren't hitting the same hardware, and (2) the cluster is protected against hardware failure because all the servers are distributed. Whether or not the architecture is assuming a name node and data node construct or a Ring design, this setup ensures performance and reliability. In addition, the option of using local storage on the virtual machine and a high-performance network will reduce latency and improve performance.

Given what most users are trying to achieve with Big Data applications-large-scale data sets, large-scale analysis, often in real time-performance is a key factor. Depending on the problem to be solved, users can also leverage a hybrid implementation that combines both virtual and dedicated servers. This setup offers maximum flexibility that balances the elastic, scalable nature of virtual machines with the single-tenancy of dedicated servers. Big Data projects don't happen in a vacuum: Although a NoSQL database can leverage dedicated servers, the app or web servers that present the results of the analysis to end users or that are used to add additional functionality like log file processing can easily be added to as many virtual machines as needed to meet demand. In addition, using the cloud means that users won't need to invest in expensive equipment, pay for power and connectivity, or hire additional resources to maintain hardware. Users simply pay for the infrastructure they need and can scale it as desired over time. The ability to scale up or down to match demand (and to pay only for the infrastructure you actually use) is one of the values of using the cloud for Big Data.

Conclusion: Succeeding with Big Data
With whatever solution you select, you should also take into account the nature of the application and where you'll want to house the processing and the output. The amount of data you collect, analyze, and present will only increase over time. The advantage will go to companies that can collect and analyze this data quickly and efficiently, allowing them to react instantly to customer sentiment and to changing trends in the ever-quickening pace of business. Make sure to select the right infrastructure vendor who can match your performance criteria and has the capacity to grow with you as your data and application needs increase to match the changing demands of your business.

More Stories By Rupert Tagnipes

Rupert Tagnipes is Senior Product Manager at GoGrid, with responsibility for managing and expanding the company's multiple product lines. His focus is on leveraging his technical background and industry knowledge to drive product innovation and increase adoption of the cloud.

He has extensive software product experience at Silicon Valley technology companies solving data analytics and cloud infrastructure problems for customers across a range of industries. Before joining GoGrid, he was a solutions architect at DASHbay, solving complex data analytics and business intelligence problems that leveraged cloud technologies for Internet companies. At Telephia / Nielsen, he was responsible for the technical development of its flagship wireless share measurement product. This product measures the market share of each carrier on a monthly basis and is an innovation in telecommunications data collection, analysis, and delivery. He earned his data chops at Informatica, developing a supply chain business analytics product that leveraged the company’s world-class ETL platform and next-generation business intelligence tools.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@MicroservicesExpo Stories
We call it DevOps but much of the time there’s a lot more discussion about the needs and concerns of developers than there is about other groups. There’s a focus on improved and less isolated developer workflows. There are many discussions around collaboration, continuous integration and delivery, issue tracking, source code control, code review, IDEs, and xPaaS – and all the tools that enable those things. Changes in developer practices may come up – such as developers taking ownership of code ...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
"We started a Master of Science in business analytics - that's the hot topic. We serve the business community around San Francisco so we educate the working professionals and this is where they all want to be," explained Judy Lee, Associate Professor and Department Chair at Golden Gate University, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Cloud Governance means many things to many people. Heck, just the word cloud means different things depending on who you are talking to. While definitions can vary, controlling access to cloud resources is invariably a central piece of any governance program. Enterprise cloud computing has transformed IT. Cloud computing decreases time-to-market, improves agility by allowing businesses to adapt quickly to changing market demands, and, ultimately, drives down costs.
For over a decade, Application Programming Interface or APIs have been used to exchange data between multiple platforms. From social media to news and media sites, most websites depend on APIs to provide a dynamic and real-time digital experience. APIs have made its way into almost every device and service available today and it continues to spur innovations in every field of technology. There are multiple programming languages used to build and run applications in the online world. And just li...
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
The general concepts of DevOps have played a central role advancing the modern software delivery industry. With the library of DevOps best practices, tips and guides expanding quickly, it can be difficult to track down the best and most accurate resources and information. In order to help the software development community, and to further our own learning, we reached out to leading industry analysts and asked them about an increasingly popular tenet of a DevOps transformation: collaboration.
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"We are an integrator of carrier ethernet and bandwidth to get people to connect to the cloud, to the SaaS providers, and the IaaS providers all on ethernet," explained Paul Mako, CEO & CTO of Massive Networks, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Grape Up leverages Cloud Native technologies and helps companies build software using microservices, and work the DevOps agile way. We've been doing digital innovation for the last 12 years," explained Daniel Heckman, of Grape Up in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Outscale was founded in 2010, is based in France, is a strategic partner to Dassault Systémes and has done quite a bit of work with divisions of Dassault," explained Jackie Funk, Digital Marketing exec at Outscale, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"I focus on what we are calling CAST Highlight, which is our SaaS application portfolio analysis tool. It is an extremely lightweight tool that can integrate with pretty much any build process right now," explained Andrew Siegmund, Application Migration Specialist for CAST, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Let's do a visualization exercise. Imagine it's December 31, 2018, and you're ringing in the New Year with your friends and family. You think back on everything that you accomplished in the last year: your company's revenue is through the roof thanks to the success of your product, and you were promoted to Lead Developer. 2019 is poised to be an even bigger year for your company because you have the tools and insight to scale as quickly as demand requires. You're a happy human, and it's not just...
The enterprise data storage marketplace is poised to become a battlefield. No longer the quiet backwater of cloud computing services, the focus of this global transition is now going from compute to storage. An overview of recent storage market history is needed to understand why this transition is important. Before 2007 and the birth of the cloud computing market we are witnessing today, the on-premise model hosted in large local data centers dominated enterprise storage. Key marketplace play...
Cavirin Systems has just announced C2, a SaaS offering designed to bring continuous security assessment and remediation to hybrid environments, containers, and data centers. Cavirin C2 is deployed within Amazon Web Services (AWS) and features a flexible licensing model for easy scalability and clear pay-as-you-go pricing. Although native to AWS, it also supports assessment and remediation of virtual or container instances within Microsoft Azure, Google Cloud Platform (GCP), or on-premise. By dr...
With continuous delivery (CD) almost always in the spotlight, continuous integration (CI) is often left out in the cold. Indeed, it's been in use for so long and so widely, we often take the model for granted. So what is CI and how can you make the most of it? This blog is intended to answer those questions. Before we step into examining CI, we need to look back. Software developers often work in small teams and modularity, and need to integrate their changes with the rest of the project code b...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...