Welcome!

Microservices Expo Authors: Karthick Viswanathan, Elizabeth White, Liz McMillan, Pat Romanski, Mehdi Daoudi

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Apache

@CloudExpo: Article

The Big Data Revolution

The problem with the term Big Data is that it’s used in a lot of different ways

For many years, companies collected data from various sources that often found its way into relational databases like Oracle and MySQL. However, the rise of the Internet, Web 2.0, and recently social media began an enormous increase in the amount of data created as well as in the type of data. No longer was data relegated to types that easily fit into standard data fields. Instead, it now came in the form of photos, geographic information, chats, Twitter feeds, and emails. The age of Big Data is upon us.

Big Data Beginnings
A study by IDC titled "The Digital Universe Decade" projects a 45-fold increase in annual data by 2020. In 2010, the amount of digital information was 1.2 zettabytes (1 zettabyte equals 1 trillion gigabytes). To put that in perspective, the equivalent of 1.2 zettabytes is a full-length episode of "24" running continuously for 125 million years, according to IDC. That's a lot of data. More important, this data has to go somewhere, and IDC's report projects that by 2020, more than one-third of all digital information created annually will either live in or pass through the cloud. With all this data being created, the challenge will be how to collect, store, and analyze what it means.

Business intelligence (BI) systems have always had to deal with large data sets. Typically the strategy was to pull in "atomic" data at the lowest level of granularity, then aggregate the information to a consumable format for end users. In fact, it was preferable to have a lot of data because you could also drill-down from the aggregation layer to get at the more detailed information, as needed.

In other words, large data sets have been around a long time. And there have been many attempts at trying to manage, wrangle, and tame the onslaught of data being generated from everywhere. But it wasn't until Jeffrey Dean and Sanjay Ghemawat of Google Labs wrote their influential paper on MapReduce in 2003 that Big Data really started to take shape. Google has had to deal with large amounts of raw data (such as crawled documents and web request logs) that needed to be analyzed in a timely manner. Creating MapReduce was their way of being able to abstract the compute parallelization, distribution of data, fault tolerance, and load balancing from developers so they could focus on expressing the computations necessary to analyze the data. This seminal paper reportedly inspired Doug Cutting to develop an open-source implementation of the MapReduce framework called "Hadoop," which was named after his son's toy elephant. Yahoo famously embraced this implementation after hiring Cutting in 2004. Yahoo continued to build upon this technology and first used Hadoop in production in 2008 for its search "webmap," which was an index of all known webpages and all the metadata needed to search them.

One of the key characteristics of Hadoop was that it could run on commodity hardware and automatically distribute jobs. By its nature, it is designed to be fault tolerant so jobs aren't impacted by the failure of a single node. According to an article in Wired magazine about Yahoo's use of Hadoop, "Hadoop could ‘map' tasks across a cluster of machines, splitting them into tiny sub-tasks, before ‘reducing' the results into one master calculation." Soon after, companies like eBay and Facebook were adopting the technology and implementing it internally. Reportedly, Facebook has the largest Hadoop cluster in the world, currently at 30 petabytes (PB).

Although early adopters of Hadoop and other Big Data technologies tended to form around the Internet, social media, and ad networks, Big Data solutions are intended to be general-purpose tools. With most companies now integrating social media into their offerings, the amount of data created internally combined with those extracted externally will only increase. This is an indication that companies from all industries will need to start investigating how to implement Big Data technologies to make use of all this data they're collecting and creating.

Making Sense of Big Data
The problem with the term Big Data is that it's used in a lot of different ways. One definition is that Big Data is any data set that is too large for on-hand data management tools. According to Martin Wattenberg, a scientist at IBM, "The real yardstick ... is how it [Big Data] compares with a natural human limit, like the sum total of all the words that you'll hear in your lifetime." Essentially, what makes something Big Data is that it:

  • Is at a large scale (petabytes, not gigabytes)
  • Has high velocity (frequently polled, generated, or collected)
  • Is unstructured (not only from a relational database)

Collecting that data is a solvable problem, but making sense of it, (particularly in real time), is the challenge that technology tries to solve. This new type of technology is often listed under the title of NoSQL (or Not Only SQL) and includes distributed databases that are a departure from relational databases like Oracle and MySQL. These systems are specifically designed to be able to parallelize compute, distribute data, and create fault tolerance on a large cluster of servers. Some examples of NoSQL projects and software are Cassandra, Hadoop, Membase, MongoDB, and Riak.

The techniques vary, but there is a definite distinction between SQL relational databases and their NoSQL brethren. Most notably, NoSQL systems share the following characteristics:

  • Do not use SQL as their primary query language
  • May not require fixed table schemas
  • May not give full ACID guarantees (Atomicity, Consistency, Isolation, Durability)
  • Scale horizontally

Because of the lack of ACID, NoSQL is used when performance and real-time results are more important than consistency. For example, if a company wants to update its website in real time based on an analysis of the behaviors of a particular user interaction with the site, it will most likely turn to NoSQL technologies to solve this use case.

However, this shortcoming doesn't mean relational databases are going away. In fact, it's likely that in larger implementations, NoSQL and SQL will function together. Just as NoSQL was designed to solve a particular use case, so do relational databases solve theirs. Relational databases excel at organizing structured data and are the standard for serving up ad-hoc analytics and BI reporting. In fact, Apache Hadoop even has a separate project called Sqoop that is designed to link Hadoop with structured data stores. Most likely, those who implement NoSQL will maintain their relational databases for legacy systems and for reporting off their NoSQL clusters.

Big Data Moves to the Cloud
The early adopters of Big Data tended to be companies with capital budgets that could be invested into dedicated data centers. However, with the incredible increase in the amount of data generated, collected, and analyzed, smaller companies can take advantage of the cloud and off-load the hardware management to those vendors. Two traits that many of these NoSQL solutions have in common make them a seemingly natural fit for the cloud: One is that the nodes are distributed, and the second is that they run on commodity hardware. The cloud is designed for horizontal scaling and often built on low-cost, commodity hardware, especially at the infrastructure-as-service (IaaS) layer, where customers simply need infrastructure and have the application expertise to build and configure their own Big Data application (whether it is with Hadoop, Cassandra, or any number of products).

Not all clouds are built the same, however. One of the design elements you should look for is the ability for each virtual server in the Big Data cluster to be deployed on different nodes. Although the servers are all on the same private VLAN, ensuring that each server is on different hardware solves for two problems: (1) all the traffic and processing aren't hitting the same hardware, and (2) the cluster is protected against hardware failure because all the servers are distributed. Whether or not the architecture is assuming a name node and data node construct or a Ring design, this setup ensures performance and reliability. In addition, the option of using local storage on the virtual machine and a high-performance network will reduce latency and improve performance.

Given what most users are trying to achieve with Big Data applications-large-scale data sets, large-scale analysis, often in real time-performance is a key factor. Depending on the problem to be solved, users can also leverage a hybrid implementation that combines both virtual and dedicated servers. This setup offers maximum flexibility that balances the elastic, scalable nature of virtual machines with the single-tenancy of dedicated servers. Big Data projects don't happen in a vacuum: Although a NoSQL database can leverage dedicated servers, the app or web servers that present the results of the analysis to end users or that are used to add additional functionality like log file processing can easily be added to as many virtual machines as needed to meet demand. In addition, using the cloud means that users won't need to invest in expensive equipment, pay for power and connectivity, or hire additional resources to maintain hardware. Users simply pay for the infrastructure they need and can scale it as desired over time. The ability to scale up or down to match demand (and to pay only for the infrastructure you actually use) is one of the values of using the cloud for Big Data.

Conclusion: Succeeding with Big Data
With whatever solution you select, you should also take into account the nature of the application and where you'll want to house the processing and the output. The amount of data you collect, analyze, and present will only increase over time. The advantage will go to companies that can collect and analyze this data quickly and efficiently, allowing them to react instantly to customer sentiment and to changing trends in the ever-quickening pace of business. Make sure to select the right infrastructure vendor who can match your performance criteria and has the capacity to grow with you as your data and application needs increase to match the changing demands of your business.

More Stories By Rupert Tagnipes

Rupert Tagnipes is Senior Product Manager at GoGrid, with responsibility for managing and expanding the company's multiple product lines. His focus is on leveraging his technical background and industry knowledge to drive product innovation and increase adoption of the cloud.

He has extensive software product experience at Silicon Valley technology companies solving data analytics and cloud infrastructure problems for customers across a range of industries. Before joining GoGrid, he was a solutions architect at DASHbay, solving complex data analytics and business intelligence problems that leveraged cloud technologies for Internet companies. At Telephia / Nielsen, he was responsible for the technical development of its flagship wireless share measurement product. This product measures the market share of each carrier on a monthly basis and is an innovation in telecommunications data collection, analysis, and delivery. He earned his data chops at Informatica, developing a supply chain business analytics product that leveraged the company’s world-class ETL platform and next-generation business intelligence tools.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
These days, APIs have become an integral part of the digital transformation journey for all enterprises. Every digital innovation story is connected to APIs . But have you ever pondered over to know what are the source of these APIs? Let me explain - APIs sources can be varied, internal or external, solving different purposes, but mostly categorized into the following two categories. Data lakes is a term used to represent disconnected but relevant data that are used by various business units wit...
Today most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes significant work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reducti...
Most of the time there is a lot of work involved to move to the cloud, and most of that isn't really related to AWS or Azure or Google Cloud. Before we talk about public cloud vendors and DevOps tools, there are usually several technical and non-technical challenges that are connected to it and that every company needs to solve to move to the cloud. In his session at 21st Cloud Expo, Stefano Bellasio, CEO and founder of Cloud Academy Inc., will discuss what the tools, disciplines, and cultural...
21st International Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Me...
With the rise of DevOps, containers are at the brink of becoming a pervasive technology in Enterprise IT to accelerate application delivery for the business. When it comes to adopting containers in the enterprise, security is the highest adoption barrier. Is your organization ready to address the security risks with containers for your DevOps environment? In his session at @DevOpsSummit at 21st Cloud Expo, Chris Van Tuin, Chief Technologist, NA West at Red Hat, will discuss: The top security r...
"NetApp's vision is how we help organizations manage data - delivering the right data in the right place, in the right time, to the people who need it, and doing it agnostic to what the platform is," explained Josh Atwell, Developer Advocate for NetApp, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Many organizations adopt DevOps to reduce cycle times and deliver software faster; some take on DevOps to drive higher quality and better end-user experience; others look to DevOps for a clearer line-of-sight to customers to drive better business impacts. In truth, these three foundations go together. In this power panel at @DevOpsSummit 21st Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, industry experts will discuss how leading organizations build application success from all...
‘Trend’ is a pretty common business term, but its definition tends to vary by industry. In performance monitoring, trend, or trend shift, is a key metric that is used to indicate change. Change is inevitable. Today’s websites must frequently update and change to keep up with competition and attract new users, but such changes can have a negative impact on the user experience if not managed properly. The dynamic nature of the Internet makes it necessary to constantly monitor different metrics. O...
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
Many organizations are now looking to DevOps maturity models to gauge their DevOps adoption and compare their maturity to their peers. However, as enterprise organizations rush to adopt DevOps, moving past experimentation to embrace it at scale, they are in danger of falling into the trap that they have fallen into time and time again. Unfortunately, we've seen this movie before, and we know how it ends: badly.
The last two years has seen discussions about cloud computing evolve from the public / private / hybrid split to the reality that most enterprises will be creating a complex, multi-cloud strategy. Companies are wary of committing all of their resources to a single cloud, and instead are choosing to spread the risk – and the benefits – of cloud computing across multiple providers and internal infrastructures, as they follow their business needs. Will this approach be successful? How large is the ...
Enterprises are moving to the cloud faster than most of us in security expected. CIOs are going from 0 to 100 in cloud adoption and leaving security teams in the dust. Once cloud is part of an enterprise stack, it’s unclear who has responsibility for the protection of applications, services, and data. When cloud breaches occur, whether active compromise or a publicly accessible database, the blame must fall on both service providers and users. In his session at 21st Cloud Expo, Ben Johnson, C...
The nature of the technology business is forward-thinking. It focuses on the future and what’s coming next. Innovations and creativity in our world of software development strive to improve the status quo and increase customer satisfaction through speed and increased connectivity. Yet, while it's exciting to see enterprises embrace new ways of thinking and advance their processes with cutting edge technology, it rarely happens rapidly or even simultaneously across all industries.
One of the biggest challenges with adopting a DevOps mentality is: new applications are easily adapted to cloud-native, microservice-based, or containerized architectures - they can be built for them - but old applications need complex refactoring. On the other hand, these new technologies can require relearning or adapting new, oftentimes more complex, methodologies and tools to be ready for production. In his general session at @DevOpsSummit at 20th Cloud Expo, Chris Brown, Solutions Marketi...
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Today companies are looking to achieve cloud-first digital agility to reduce time-to-market, optimize utilization of resources, and rapidly deliver disruptive business solutions. However, leveraging the benefits of cloud deployments can be complicated for companies with extensive legacy computing environments. In his session at 21st Cloud Expo, Craig Sproule, founder and CEO of Metavine, will outline the challenges enterprises face in migrating legacy solutions to the cloud. He will also prese...
DevOps at Cloud Expo – being held October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real r...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory?