Welcome!

Microservices Expo Authors: Elizabeth White, XebiaLabs Blog, Liz McMillan, Sematext Blog, Pat Romanski

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Apache

@CloudExpo: Article

The Big Data Revolution

The problem with the term Big Data is that it’s used in a lot of different ways

For many years, companies collected data from various sources that often found its way into relational databases like Oracle and MySQL. However, the rise of the Internet, Web 2.0, and recently social media began an enormous increase in the amount of data created as well as in the type of data. No longer was data relegated to types that easily fit into standard data fields. Instead, it now came in the form of photos, geographic information, chats, Twitter feeds, and emails. The age of Big Data is upon us.

Big Data Beginnings
A study by IDC titled "The Digital Universe Decade" projects a 45-fold increase in annual data by 2020. In 2010, the amount of digital information was 1.2 zettabytes (1 zettabyte equals 1 trillion gigabytes). To put that in perspective, the equivalent of 1.2 zettabytes is a full-length episode of "24" running continuously for 125 million years, according to IDC. That's a lot of data. More important, this data has to go somewhere, and IDC's report projects that by 2020, more than one-third of all digital information created annually will either live in or pass through the cloud. With all this data being created, the challenge will be how to collect, store, and analyze what it means.

Business intelligence (BI) systems have always had to deal with large data sets. Typically the strategy was to pull in "atomic" data at the lowest level of granularity, then aggregate the information to a consumable format for end users. In fact, it was preferable to have a lot of data because you could also drill-down from the aggregation layer to get at the more detailed information, as needed.

In other words, large data sets have been around a long time. And there have been many attempts at trying to manage, wrangle, and tame the onslaught of data being generated from everywhere. But it wasn't until Jeffrey Dean and Sanjay Ghemawat of Google Labs wrote their influential paper on MapReduce in 2003 that Big Data really started to take shape. Google has had to deal with large amounts of raw data (such as crawled documents and web request logs) that needed to be analyzed in a timely manner. Creating MapReduce was their way of being able to abstract the compute parallelization, distribution of data, fault tolerance, and load balancing from developers so they could focus on expressing the computations necessary to analyze the data. This seminal paper reportedly inspired Doug Cutting to develop an open-source implementation of the MapReduce framework called "Hadoop," which was named after his son's toy elephant. Yahoo famously embraced this implementation after hiring Cutting in 2004. Yahoo continued to build upon this technology and first used Hadoop in production in 2008 for its search "webmap," which was an index of all known webpages and all the metadata needed to search them.

One of the key characteristics of Hadoop was that it could run on commodity hardware and automatically distribute jobs. By its nature, it is designed to be fault tolerant so jobs aren't impacted by the failure of a single node. According to an article in Wired magazine about Yahoo's use of Hadoop, "Hadoop could ‘map' tasks across a cluster of machines, splitting them into tiny sub-tasks, before ‘reducing' the results into one master calculation." Soon after, companies like eBay and Facebook were adopting the technology and implementing it internally. Reportedly, Facebook has the largest Hadoop cluster in the world, currently at 30 petabytes (PB).

Although early adopters of Hadoop and other Big Data technologies tended to form around the Internet, social media, and ad networks, Big Data solutions are intended to be general-purpose tools. With most companies now integrating social media into their offerings, the amount of data created internally combined with those extracted externally will only increase. This is an indication that companies from all industries will need to start investigating how to implement Big Data technologies to make use of all this data they're collecting and creating.

Making Sense of Big Data
The problem with the term Big Data is that it's used in a lot of different ways. One definition is that Big Data is any data set that is too large for on-hand data management tools. According to Martin Wattenberg, a scientist at IBM, "The real yardstick ... is how it [Big Data] compares with a natural human limit, like the sum total of all the words that you'll hear in your lifetime." Essentially, what makes something Big Data is that it:

  • Is at a large scale (petabytes, not gigabytes)
  • Has high velocity (frequently polled, generated, or collected)
  • Is unstructured (not only from a relational database)

Collecting that data is a solvable problem, but making sense of it, (particularly in real time), is the challenge that technology tries to solve. This new type of technology is often listed under the title of NoSQL (or Not Only SQL) and includes distributed databases that are a departure from relational databases like Oracle and MySQL. These systems are specifically designed to be able to parallelize compute, distribute data, and create fault tolerance on a large cluster of servers. Some examples of NoSQL projects and software are Cassandra, Hadoop, Membase, MongoDB, and Riak.

The techniques vary, but there is a definite distinction between SQL relational databases and their NoSQL brethren. Most notably, NoSQL systems share the following characteristics:

  • Do not use SQL as their primary query language
  • May not require fixed table schemas
  • May not give full ACID guarantees (Atomicity, Consistency, Isolation, Durability)
  • Scale horizontally

Because of the lack of ACID, NoSQL is used when performance and real-time results are more important than consistency. For example, if a company wants to update its website in real time based on an analysis of the behaviors of a particular user interaction with the site, it will most likely turn to NoSQL technologies to solve this use case.

However, this shortcoming doesn't mean relational databases are going away. In fact, it's likely that in larger implementations, NoSQL and SQL will function together. Just as NoSQL was designed to solve a particular use case, so do relational databases solve theirs. Relational databases excel at organizing structured data and are the standard for serving up ad-hoc analytics and BI reporting. In fact, Apache Hadoop even has a separate project called Sqoop that is designed to link Hadoop with structured data stores. Most likely, those who implement NoSQL will maintain their relational databases for legacy systems and for reporting off their NoSQL clusters.

Big Data Moves to the Cloud
The early adopters of Big Data tended to be companies with capital budgets that could be invested into dedicated data centers. However, with the incredible increase in the amount of data generated, collected, and analyzed, smaller companies can take advantage of the cloud and off-load the hardware management to those vendors. Two traits that many of these NoSQL solutions have in common make them a seemingly natural fit for the cloud: One is that the nodes are distributed, and the second is that they run on commodity hardware. The cloud is designed for horizontal scaling and often built on low-cost, commodity hardware, especially at the infrastructure-as-service (IaaS) layer, where customers simply need infrastructure and have the application expertise to build and configure their own Big Data application (whether it is with Hadoop, Cassandra, or any number of products).

Not all clouds are built the same, however. One of the design elements you should look for is the ability for each virtual server in the Big Data cluster to be deployed on different nodes. Although the servers are all on the same private VLAN, ensuring that each server is on different hardware solves for two problems: (1) all the traffic and processing aren't hitting the same hardware, and (2) the cluster is protected against hardware failure because all the servers are distributed. Whether or not the architecture is assuming a name node and data node construct or a Ring design, this setup ensures performance and reliability. In addition, the option of using local storage on the virtual machine and a high-performance network will reduce latency and improve performance.

Given what most users are trying to achieve with Big Data applications-large-scale data sets, large-scale analysis, often in real time-performance is a key factor. Depending on the problem to be solved, users can also leverage a hybrid implementation that combines both virtual and dedicated servers. This setup offers maximum flexibility that balances the elastic, scalable nature of virtual machines with the single-tenancy of dedicated servers. Big Data projects don't happen in a vacuum: Although a NoSQL database can leverage dedicated servers, the app or web servers that present the results of the analysis to end users or that are used to add additional functionality like log file processing can easily be added to as many virtual machines as needed to meet demand. In addition, using the cloud means that users won't need to invest in expensive equipment, pay for power and connectivity, or hire additional resources to maintain hardware. Users simply pay for the infrastructure they need and can scale it as desired over time. The ability to scale up or down to match demand (and to pay only for the infrastructure you actually use) is one of the values of using the cloud for Big Data.

Conclusion: Succeeding with Big Data
With whatever solution you select, you should also take into account the nature of the application and where you'll want to house the processing and the output. The amount of data you collect, analyze, and present will only increase over time. The advantage will go to companies that can collect and analyze this data quickly and efficiently, allowing them to react instantly to customer sentiment and to changing trends in the ever-quickening pace of business. Make sure to select the right infrastructure vendor who can match your performance criteria and has the capacity to grow with you as your data and application needs increase to match the changing demands of your business.

More Stories By Rupert Tagnipes

Rupert Tagnipes is Senior Product Manager at GoGrid, with responsibility for managing and expanding the company's multiple product lines. His focus is on leveraging his technical background and industry knowledge to drive product innovation and increase adoption of the cloud.

He has extensive software product experience at Silicon Valley technology companies solving data analytics and cloud infrastructure problems for customers across a range of industries. Before joining GoGrid, he was a solutions architect at DASHbay, solving complex data analytics and business intelligence problems that leveraged cloud technologies for Internet companies. At Telephia / Nielsen, he was responsible for the technical development of its flagship wireless share measurement product. This product measures the market share of each carrier on a monthly basis and is an innovation in telecommunications data collection, analysis, and delivery. He earned his data chops at Informatica, developing a supply chain business analytics product that leveraged the company’s world-class ETL platform and next-generation business intelligence tools.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@MicroservicesExpo Stories
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
I’m a huge fan of open source DevOps tools. I’m also a huge fan of scaling open source tools for the enterprise. But having talked with my fair share of companies over the years, one important thing I’ve learned is that you can’t scale your release process using open source tools alone. They simply require too much scripting and maintenance when used that way. Scripting may be fine for smaller organizations, but it’s not ok in an enterprise environment that includes many independent teams and to...
In IT, we sometimes coin terms for things before we know exactly what they are and how they’ll be used. The resulting terms may capture a common set of aspirations and goals – as “cloud” did broadly for on-demand, self-service, and flexible computing. But such a term can also lump together diverse and even competing practices, technologies, and priorities to the point where important distinctions are glossed over and lost.
SYS-CON Events announced today that Dataloop.IO, an innovator in cloud IT-monitoring whose products help organizations save time and money, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Dataloop.IO is an emerging software company on the cutting edge of major IT-infrastructure trends including cloud computing and microservices. The company, founded in the UK but now based in San Fran...
Monitoring of Docker environments is challenging. Why? Because each container typically runs a single process, has its own environment, utilizes virtual networks, or has various methods of managing storage. Traditional monitoring solutions take metrics from each server and applications they run. These servers and applications running on them are typically very static, with very long uptimes. Docker deployments are different: a set of containers may run many applications, all sharing the resource...
Join Impiger for their featured webinar: ‘Cloud Computing: A Roadmap to Modern Software Delivery’ on November 10, 2016, at 12:00 pm CST. Very few companies have not experienced some impact to their IT delivery due to the evolution of cloud computing. This webinar is not about deciding whether you should entertain moving some or all of your IT to the cloud, but rather, a detailed look under the hood to help IT professionals understand how cloud adoption has evolved and what trends will impact th...
In his session at 19th Cloud Expo, Claude Remillard, Principal Program Manager in Developer Division at Microsoft, contrasted how his team used config as code and immutable patterns for continuous delivery of microservices and apps to the cloud. He showed how the immutable patterns helps developers do away with most of the complexity of config as code-enabling scenarios such as rollback, zero downtime upgrades with far greater simplicity. He also demoed building immutable pipelines in the cloud ...
@DevOpsSummit taking place June 6-8, 2017 at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @DevOpsSummit at Cloud Expo New York Call for Papers is now open.
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
Financial Technology has become a topic of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 20th Cloud Expo at the Javits Center in New York, June 6-8, 2017, will find fresh new content in a new track called FinTech.
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Get deep visibility into the performance of your databases and expert advice for performance optimization and tuning. You can't get application performance without database performance. Give everyone on the team a comprehensive view of how every aspect of the system affects performance across SQL database operations, host server and OS, virtualization resources and storage I/O. Quickly find bottlenecks and troubleshoot complex problems.
Rapid innovation, changing business landscapes, and new IT demands force businesses to make changes quickly. In the eyes of many, containers are at the brink of becoming a pervasive technology in enterprise IT to accelerate application delivery. In this presentation, attendees learned about the: The transformation of IT to a DevOps, microservices, and container-based architecture What are containers and how DevOps practices can operate in a container-based environment A demonstration of how ...
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2017 New York. The 20th Cloud Expo and 7th @ThingsExpo will take place on June 6-8, 2017, at the Javits Center in New York City, NY. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Internet to enable us all to im...
Cloud Expo, Inc. has announced today that Andi Mann returns to 'DevOps at Cloud Expo 2017' as Conference Chair The @DevOpsSummit at Cloud Expo will take place on June 6-8, 2017, at the Javits Center in New York City, NY. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the great t...
Application transformation and DevOps practices are two sides of the same coin. Enterprises that want to capture value faster, need to deliver value faster – time value of money principle. To do that enterprises need to build cloud-native apps as microservices by empowering teams to build, ship, and run in production. In his session at @DevOpsSummit at 19th Cloud Expo, Neil Gehani, senior product manager at HPE, discussed what every business should plan for how to structure their teams to delive...
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his general session at @DevOpsSummit at 19th Cloud Expo, Phil Hombledal, Solution Architect at CollabNet, discussed how customers are able to achieve a level of transparency that e...
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, showed how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningful f...