Welcome!

Microservices Expo Authors: Dan Blacharski, Kong Yang, Carmen Gonzalez, Yeshim Deniz, Jyoti Bansal

Related Topics: Containers Expo Blog, Microservices Expo, @CloudExpo

Containers Expo Blog: Article

Data Mining and Data Virtualization

Extending Data Virtualization Platforms

Data Mining helps organizations to discover new insights from existing data, so that predictive techniques can be applied towards various business needs. The following are the typical characteristics of data mining.

  • Extends Business Intelligence, beyond Query, Reporting and OLAP (Online Analytical Processing)
  • Data Mining is cornerstone for assessing the customer risk, market segmentation and prediction
  • Data Mining is about performing computationally complex analysis techniques on very large volumes of data
  • It combines the analysis of historical data with modeling techniques towards future predictions, it turns Operations into performance

The following are the use cases that can benefit from the application of data mining:

  • Manufacturing / Product Development: Understanding the defect and customer complaints into a model that can provide insight into customer satisfaction and help enterprises build better products
  • Consumer Payments: Understand the payment patterns of consumers to predict market penetration analysis and discount guidelines.
  • Consumer Industry: Customer segmentation to understand the customer base and help targeted advertisements and promotions.
  • Consumer Industry: Campaign effectiveness can be gauged with customer segmentation coupled with predictive marketing models.
  • Retail Indsutry: Supply chain efficiencies can be brought by mining the supply demand data

‘In Database' Data Mining
Data Mining is typically a multi-step process.

  1. Define the Business Issue to Be Addressed, e.g., Customer Attrition, Fraud Detection, Cross Selling.
  2. Identify the Data Model / Define the Data / Source the Data.(Data Sources, Data Types, Data Usage etc.)
  3. Choose the Mining Technique (Discovery Data Mining, Predictive Data Mining, Clustering, Link Analysis, Classification, Value Prediction)
  4. Interpret the Results (Visualization Techniques)
  5. Deploy the Results (CRM Systems.)

Initially Data Mining has been implemented with a combination of multiple tools and systems, which resulted in latency and a long cycle for realization of results.

Sensing this issue, major RDBMS vendors have implemented Data Mining as part of their core database offering. This offering has the following key features:

  • Data Mining engine resides inside the traditional database environment facilitating easier licensing and packaging options
  • Eliminates the data extraction and data movement and avoids costly ETL process
  • Major Data Mining models are available as pre-built SQL functions which can be easily integrated into the existing database development process.

The following is some of the information about data mining features as part of the popular databases:

Built as DB2 data mining functions, the Modeling and Scoring services directly integrate data mining technology into DB2. This leads to faster application performance. Developers want integration and performance, as well as any facility to make their job easier. The model can be used within any SQL statement. This means the scoring function can be invoked with ease from any application that is SQL aware, either in batch, real time, or as a trigger.

Oracle Data Mining, a component of the Oracle Advanced Analytics Option, delivers a wide range of cutting edge machine learning algorithms inside the Oracle Database. Since Oracle Data Mining functions reside natively in the Oracle Database kernel, they deliver unparallel performance, scalability and security. The data and data mining functions never leave the database to deliver a comprehensive in-database processing solution.

Data Virtualization: Data Virtualization is the new concept that allows , enterprises to access their information contained in disparate data sources in a seamless way. As mentioned in my earlier articles there are specialized Data virtualization platforms from vendors like, Composite Software, Denodo Technologies, IBM, Informatica, Microsoft have developed specialized data virtualization engines. My earlier article details out Data Virtualization using Middleware Vs RDBMS.

Data virtualization solutions provide a virtualized data services layer that integrates data from heterogeneous data sources and content in real time, near-real time, or batch as needed to support a wide range of applications and processes. : The Forrester Wave: Data Virtualization, Q1 2012 puts the data virtualization in the following perspective, in the past 24 months, we have seen a significant increase in adoption in the healthcare, insurance, retail, manufacturing, eCommerce, and media/entertainment sectors. Regardless of industry, all firms can benefit from data virtualization.

Data Mining Inside Data Virtualization Platforms?
The increase in data sources, especially integration with Big Data and Unstructured data made Data Virtualization platform a important part of enterprise data access strategy. Data virtualization provides the following attributes for efficient data access across enterprise.

  • Abstraction: Provides location, API, language and storage technology independent access of data
  • Federation: Converges data from multiple disparate data sources
  • Transformation: Enriches the quality and quantity of data on a need basis
  • On-Demand Delivery: Provides the consuming applications the required information on-demand

With the above benefits of the Data Virtualization Platform in mind, it is evident that enterprises will find it more useful if Data Virtualization platforms are built with Data Mining Models and Algorithms, so that effective Data Mining can be performed on top of Data Virtualization platform.

As the important part of Data Mining is about identifying the correct data sources and associated events of interest, effective Data Mining can be built if disparate data sources are brought under the scope of Data Virtualization Platform rather than putting the Data Mining inside a single database engine.

The following extended view of Data Virtualization Platform signifies how Data Mining can be part of Data Virtualization Platform.

Summary
Data Virtualization is becoming part of the mainstream enterprise data access strategy, mainly because it abstracts the multiple data sources and avoids complex ETL processing and facilitates the single version of truth, data quality and zero latency enterprise.

If value adds like a Data Mining engine can be built on top of the existing Data Virtualization platform, the enterprises will benefit further.

More Stories By Srinivasan Sundara Rajan

Highly passionate about utilizing Digital Technologies to enable next generation enterprise. Believes in enterprise transformation through the Natives (Cloud Native & Mobile Native).

@MicroservicesExpo Stories
When you decide to launch a startup company, business advisors, counselors, bankers and armchair know-it-alls will tell you that the first thing you need to do is get funding. While there is some validity to that boilerplate piece of wisdom, the availability of and need for startup funding has gone through a dramatic transformation over the past decade, and the next few years will see even more of a shift. A perfect storm of events is causing this seismic shift. On the macroeconomic side this ...
To more closely examine the variety of ways in which IT departments around the world are integrating cloud services, and the effect hybrid IT has had on their organizations and IT job roles, SolarWinds recently released the SolarWinds IT Trends Report 2017: Portrait of a Hybrid Organization. This annual study consists of survey-based research that explores significant trends, developments, and movements related to and directly affecting IT and IT professionals.
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Val...
Cloud Expo, Inc. has announced today that Aruna Ravichandran, vice president of DevOps Product and Solutions Marketing at CA Technologies, has been named co-conference chair of DevOps at Cloud Expo 2017. The @DevOpsSummit at Cloud Expo New York will take place on June 6-8, 2017, at the Javits Center in New York City, New York, and @DevOpsSummit at Cloud Expo Silicon Valley will take place Oct. 31-Nov. 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Is your application too difficult to manage? Do changes take dozens of developers hundreds of hours to execute, and frequently result in downtime across all your site’s functions? It sounds like you have a monolith! A monolith is one of the three main software architectures that define most applications. Whether you’ve intentionally set out to create a monolith or not, it’s worth at least weighing the pros and cons of the different architectural approaches and deciding which one makes the most s...
Cloud promises the agility required by today’s digital businesses. As organizations adopt cloud based infrastructures and services, their IT resources become increasingly dynamic and hybrid in nature. Managing these require modern IT operations and tools. In his session at 20th Cloud Expo, Raj Sundaram, Senior Principal Product Manager at CA Technologies, will discuss how to modernize your IT operations in order to proactively manage your hybrid cloud and IT environments. He will be sharing be...
This recent research on cloud computing from the Register delves a little deeper than many of the "We're all adopting cloud!" surveys we've seen. They found that meaningful cloud adoption and the idea of the cloud-first enterprise are still not reality for many businesses. The Register's stats also show a more gradual cloud deployment trend over the past five years, not any sort of explosion. One important takeaway is that coherence across internal and external clouds is essential for IT right n...
Back in February of 2017, Andrew Clay Schafer of Pivotal tweeted the following: “seriously tho, the whole software industry is stuck on deployment when we desperately need architecture and telemetry.” Intrigue in a 140 characters. For me, I hear Andrew saying, “we’re jumping to step 5 before we’ve successfully completed steps 1-4.”
A Man in the Middle attack, or MITM, is a situation wherein a malicious entity can read/write data that is being transmitted between two or more systems (in most cases, between you and the website that you are surfing). MITMs are common in China, thanks to the “Great Cannon.” The “Great Cannon” is slightly different from the “The Great Firewall.” The firewall monitors web traffic moving in and out of China and blocks prohibited content. The Great Cannon, on the other hand, acts as a man in the...
Enterprise architects are increasingly adopting multi-cloud strategies as they seek to utilize existing data center assets, leverage the advantages of cloud computing and avoid cloud vendor lock-in. This requires a globally aware traffic management strategy that can monitor infrastructure health across data centers and end-user experience globally, while responding to control changes and system specification at the speed of today’s DevOps teams. In his session at 20th Cloud Expo, Josh Gray, Chie...
In his session at 20th Cloud Expo, Scott Davis, CTO of Embotics, will discuss how automation can provide the dynamic management required to cost-effectively deliver microservices and container solutions at scale. He will discuss how flexible automation is the key to effectively bridging and seamlessly coordinating both IT and developer needs for component orchestration across disparate clouds – an increasingly important requirement at today’s multi-cloud enterprise.
Keeping pace with advancements in software delivery processes and tooling is taxing even for the most proficient organizations. Point tools, platforms, open source and the increasing adoption of private and public cloud services requires strong engineering rigor – all in the face of developer demands to use the tools of choice. As Agile has settled in as a mainstream practice, now DevOps has emerged as the next wave to improve software delivery speed and output. To make DevOps work, organization...
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
In large enterprises, environment provisioning and server provisioning account for a significant portion of the operations team's time. This often leaves users frustrated while they wait for these services. For instance, server provisioning can take several days and sometimes even weeks. At the same time, digital transformation means the need for server and environment provisioning is constantly growing. Organizations are adopting agile methodologies and software teams are increasing the speed ...
Developers want to create better apps faster. Static clouds are giving way to scalable systems, with dynamic resource allocation and application monitoring. You won't hear that chant from users on any picket line, but helping developers to create better apps faster is the mission of Lee Atchison, principal cloud architect and advocate at New Relic Inc., based in San Francisco. His singular job is to understand and drive the industry in the areas of cloud architecture, microservices, scalability ...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Software as a service (SaaS), one of the earliest and most successful cloud services, has reached mainstream status. According to Cisco, by 2019 more than four-fifths (83 percent) of all data center traffic will be based in the cloud, up from 65 percent today. The majority of this traffic will be applications. Businesses of all sizes are adopting a variety of SaaS-based services – everything from collaboration tools to mission-critical commerce-oriented applications. The rise in SaaS usage has m...
The proper isolation of resources is essential for multi-tenant environments. The traditional approach to isolate resources is, however, rather heavyweight. In his session at 18th Cloud Expo, Igor Drobiazko, co-founder of elastic.io, drew upon his own experience with operating a Docker container-based infrastructure on a large scale and present a lightweight solution for resource isolation using microservices. He also discussed the implementation of microservices in data and application integrat...
We'd all like to fulfill that "find a job you love and you'll never work a day in your life" cliché. But in reality, every job (even if it's our dream job) comes with its downsides. For you, the constant fight against shadow IT might get on your last nerves. For your developer coworkers, infrastructure management is the roadblock that stands in the way of focusing on coding. As you watch more and more applications and processes move to the cloud, technology is coming to developers' rescue-most r...
2016 has been an amazing year for Docker and the container industry. We had 3 major releases of Docker engine this year , and tremendous increase in usage. The community has been following along and contributing amazing Docker resources to help you learn and get hands-on experience. Here’s some of the top read and viewed content for the year. Of course releases are always really popular, particularly when they fit requests we had from the community.