Click here to close now.

Welcome!

@MicroservicesE Blog Authors: Elizabeth White, Pat Romanski, Lori MacVittie, Liz McMillan, Cloud Best Practices Network

Related Topics: @ContainersExpo, @MicroservicesE Blog, @CloudExpo Blog

@ContainersExpo: Article

Data Mining and Data Virtualization

Extending Data Virtualization Platforms

Data Mining helps organizations to discover new insights from existing data, so that predictive techniques can be applied towards various business needs. The following are the typical characteristics of data mining.

  • Extends Business Intelligence, beyond Query, Reporting and OLAP (Online Analytical Processing)
  • Data Mining is cornerstone for assessing the customer risk, market segmentation and prediction
  • Data Mining is about performing computationally complex analysis techniques on very large volumes of data
  • It combines the analysis of historical data with modeling techniques towards future predictions, it turns Operations into performance

The following are the use cases that can benefit from the application of data mining:

  • Manufacturing / Product Development: Understanding the defect and customer complaints into a model that can provide insight into customer satisfaction and help enterprises build better products
  • Consumer Payments: Understand the payment patterns of consumers to predict market penetration analysis and discount guidelines.
  • Consumer Industry: Customer segmentation to understand the customer base and help targeted advertisements and promotions.
  • Consumer Industry: Campaign effectiveness can be gauged with customer segmentation coupled with predictive marketing models.
  • Retail Indsutry: Supply chain efficiencies can be brought by mining the supply demand data

‘In Database' Data Mining
Data Mining is typically a multi-step process.

  1. Define the Business Issue to Be Addressed, e.g., Customer Attrition, Fraud Detection, Cross Selling.
  2. Identify the Data Model / Define the Data / Source the Data.(Data Sources, Data Types, Data Usage etc.)
  3. Choose the Mining Technique (Discovery Data Mining, Predictive Data Mining, Clustering, Link Analysis, Classification, Value Prediction)
  4. Interpret the Results (Visualization Techniques)
  5. Deploy the Results (CRM Systems.)

Initially Data Mining has been implemented with a combination of multiple tools and systems, which resulted in latency and a long cycle for realization of results.

Sensing this issue, major RDBMS vendors have implemented Data Mining as part of their core database offering. This offering has the following key features:

  • Data Mining engine resides inside the traditional database environment facilitating easier licensing and packaging options
  • Eliminates the data extraction and data movement and avoids costly ETL process
  • Major Data Mining models are available as pre-built SQL functions which can be easily integrated into the existing database development process.

The following is some of the information about data mining features as part of the popular databases:

Built as DB2 data mining functions, the Modeling and Scoring services directly integrate data mining technology into DB2. This leads to faster application performance. Developers want integration and performance, as well as any facility to make their job easier. The model can be used within any SQL statement. This means the scoring function can be invoked with ease from any application that is SQL aware, either in batch, real time, or as a trigger.

Oracle Data Mining, a component of the Oracle Advanced Analytics Option, delivers a wide range of cutting edge machine learning algorithms inside the Oracle Database. Since Oracle Data Mining functions reside natively in the Oracle Database kernel, they deliver unparallel performance, scalability and security. The data and data mining functions never leave the database to deliver a comprehensive in-database processing solution.

Data Virtualization: Data Virtualization is the new concept that allows , enterprises to access their information contained in disparate data sources in a seamless way. As mentioned in my earlier articles there are specialized Data virtualization platforms from vendors like, Composite Software, Denodo Technologies, IBM, Informatica, Microsoft have developed specialized data virtualization engines. My earlier article details out Data Virtualization using Middleware Vs RDBMS.

Data virtualization solutions provide a virtualized data services layer that integrates data from heterogeneous data sources and content in real time, near-real time, or batch as needed to support a wide range of applications and processes. : The Forrester Wave: Data Virtualization, Q1 2012 puts the data virtualization in the following perspective, in the past 24 months, we have seen a significant increase in adoption in the healthcare, insurance, retail, manufacturing, eCommerce, and media/entertainment sectors. Regardless of industry, all firms can benefit from data virtualization.

Data Mining Inside Data Virtualization Platforms?
The increase in data sources, especially integration with Big Data and Unstructured data made Data Virtualization platform a important part of enterprise data access strategy. Data virtualization provides the following attributes for efficient data access across enterprise.

  • Abstraction: Provides location, API, language and storage technology independent access of data
  • Federation: Converges data from multiple disparate data sources
  • Transformation: Enriches the quality and quantity of data on a need basis
  • On-Demand Delivery: Provides the consuming applications the required information on-demand

With the above benefits of the Data Virtualization Platform in mind, it is evident that enterprises will find it more useful if Data Virtualization platforms are built with Data Mining Models and Algorithms, so that effective Data Mining can be performed on top of Data Virtualization platform.

As the important part of Data Mining is about identifying the correct data sources and associated events of interest, effective Data Mining can be built if disparate data sources are brought under the scope of Data Virtualization Platform rather than putting the Data Mining inside a single database engine.

The following extended view of Data Virtualization Platform signifies how Data Mining can be part of Data Virtualization Platform.

Summary
Data Virtualization is becoming part of the mainstream enterprise data access strategy, mainly because it abstracts the multiple data sources and avoids complex ETL processing and facilitates the single version of truth, data quality and zero latency enterprise.

If value adds like a Data Mining engine can be built on top of the existing Data Virtualization platform, the enterprises will benefit further.

More Stories By Srinivasan Sundara Rajan

Srinivasan is passionate about ownership and driving things on his own, with his breadth and depth on Enterprise Technology he could run any aspect of IT Industry and make it a success.

He is a seasoned Enterprise IT Expert, mainly in the areas of Solution, Integration and Architecture, across Structured, Unstructured data sources, especially in manufacturing domain.

He currently works as Technology Head For GAVS Technologies.

@MicroservicesExpo Stories
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at DevOps Summit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction. ...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...
Conferences agendas. Event navigation. Specific tasks, like buying a house or getting a car loan. If you've installed an app for any of these things you've installed what's known as a "disposable mobile app" or DMA. Apps designed for a single use-case and with the expectation they'll be "thrown away" like brochures. Deleted until needed again. These apps are necessarily small, agile and highly volatile. Sometimes existing only for a short time - say to support an event like an election, the Wor...
"Plutora provides release and testing environment capabilities to the enterprise," explained Dalibor Siroky, Director and Co-founder of Plutora, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
Cloud Migration Management (CMM) refers to the best practices for planning and managing migration of IT systems from a legacy platform to a Cloud Provider through a combination professional services consulting and software tools. A Cloud migration project can be a relatively simple exercise, where applications are migrated ‘as is’, to gain benefits such as elastic capacity and utility pricing, but without making any changes to the application architecture, software development methods or busine...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...
Data center models are changing. A variety of technical trends and business demands are forcing that change, most of them centered on the explosive growth of applications. That means, in turn, that the requirements for application delivery are changing. Certainly application delivery needs to be agile, not waterfall. It needs to deliver services in hours, not weeks or months. It needs to be more cost efficient. And more than anything else, it needs to be really, dc infra axisreally, super focus...
Sharding has become a popular means of achieving scalability in application architectures in which read/write data separation is not only possible, but desirable to achieve new heights of concurrency. The premise is that by splitting up read and write duties, it is possible to get better overall performance at the cost of a slight delay in consistency. That is, it takes a bit of time to replicate changes initiated by a "write" to the read-only master database. It's eventually consistent, and it'...
Many people recognize DevOps as an enormous benefit – faster application deployment, automated toolchains, support of more granular updates, better cooperation across groups. However, less appreciated is the journey enterprise IT groups need to make to achieve this outcome. The plain fact is that established IT processes reflect a very different set of goals: stability, infrequent change, hands-on administration, and alignment with ITIL. So how does an enterprise IT organization implement change...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
At DevOps Summit NY there’s been a whole lot of talk about not just DevOps, but containers, IoT, and microservices. Sessions focused not just on the cultural shift needed to grow at scale with a DevOps approach, but also made sure to include the network ”plumbing” needed to ensure success as applications decompose into the microservice architectures enabling rapid growth and support for the Internet of (Every)Things.
Mashape is bringing real-time analytics to microservices with the release of Mashape Analytics. First built internally to analyze the performance of more than 13,000 APIs served by the mashape.com marketplace, this new tool provides developers with robust visibility into their APIs and how they function within microservices. A purpose-built, open analytics platform designed specifically for APIs and microservices architectures, Mashape Analytics also lets developers and DevOps teams understand w...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud envir...
Sumo Logic has announced comprehensive analytics capabilities for organizations embracing DevOps practices, microservices architectures and containers to build applications. As application architectures evolve toward microservices, containers continue to gain traction for providing the ideal environment to build, deploy and operate these applications across distributed systems. The volume and complexity of data generated by these environments make monitoring and troubleshooting an enormous chall...
Containers and Docker are all the rage these days. In fact, containers — with Docker as the leading container implementation — have changed how we deploy systems, especially those comprised of microservices. Despite all the buzz, however, Docker and other containers are still relatively new and not yet mainstream. That being said, even early Docker adopters need a good monitoring tool, so last month we added Docker monitoring to SPM. We built it on top of spm-agent – the extensible framework f...
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.
There's a lot of things we do to improve the performance of web and mobile applications. We use caching. We use compression. We offload security (SSL and TLS) to a proxy with greater compute capacity. We apply image optimization and minification to content. We do all that because performance is king. Failure to perform can be, for many businesses, equivalent to an outage with increased abandonment rates and angry customers taking to the Internet to express their extreme displeasure.